Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
NOVEL GLUCAGON ANTAGONISTS
Document Type and Number:
WIPO Patent Application WO/2003/048109
Kind Code:
A1
Abstract:
Novel compounds that act to antagonize the action of the glucagon peptide hormone on the glucagon receptor. More particularly, it relates to glucagon antagonists or inverse agonists.

Inventors:
KODRA JANOS TIBOR
MADSEN PETER
LAU JESPER
JOERGENSEN ANKER STEEN
CHRISTENSEN INGE THOEGER
Application Number:
PCT/DK2002/000800
Publication Date:
June 12, 2003
Filing Date:
November 28, 2002
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
NOVO NORDISK AS (DK)
International Classes:
C07D295/14; A61K31/195; A61K31/197; A61K31/198; A61K31/245; A61K31/277; A61K31/341; A61K31/357; A61K31/36; A61K31/381; A61K31/4035; A61K31/404; A61K31/41; A61K31/423; A61K31/4245; A61K31/426; A61K31/428; A61K31/429; A61K31/44; A61K31/4406; A61K31/4409; A61K31/4439; A61K31/4453; A61K45/06; A61P3/04; A61P3/06; A61P3/10; A61P5/48; A61P43/00; C07C233/83; C07C235/38; C07C255/60; C07C311/46; C07C317/24; C07C317/40; C07C317/44; C07C323/22; C07D209/08; C07D209/48; C07D213/40; C07D213/74; C07D213/81; C07D257/04; C07D257/06; C07D263/56; C07D271/06; C07D277/28; C07D277/66; C07D277/82; C07D307/68; C07D317/60; C07D319/10; C07D319/20; C07D333/20; C07D333/24; C07D333/28; C07D333/36; C07D513/04; (IPC1-7): C07C235/84; A61K31/10; A61K31/16; A61P3/10; C07C323/62
Domestic Patent References:
WO2002000612A12002-01-03
WO2000039088A12000-07-06
Download PDF:
Claims:
CLAIMS
1. A compound of the general formula (I) : wherein A is m is 0 or 1, n is 0, 1, 2 or 3, with the proviso that m and n must not both be 0, R4 is hydrogen, halogen or (CH2)oOR5, o is 0 or 1, R5 is hydrogen, C16alkyl, C16alkanoyl, aryl or arylC16alkyl, R'and R2 independently are hydrogen, halogen or C16alkyl, or R1 and R2 are combined to form a double bond, R3 is hydrogen, C16alkyl or halogen, or R3 and R2 are combined to form a double bond to oxygen, X is aryiene or heteroarylene, which may optionally be substituted with one or two groups R6 and R7 selected from halogen,CN,CF3,OCF3,OCHFz,NO2,ORe,NR8R9 and C16alkyl, R8 and R9 independently are hydrogen or C16alkyl, Y is C(O), O, NR10,, S, S(O), S(O)2 or CR11R12, R'° is hydrogen or C16alkyl, R11 and R12 independently are hydrogen, C, 6alkyl or hydroxy, or R"is combined with R'to form a double bond, and R12 is hydrogen, C16alkyl or hydroxy, Z is C(O)(CR13R14)p, O(CR13R14)p, S(CR13R14)p, S(O)(CR13R14)p, S(O)2(CR13R14)p, NR15(CR13R14)p or (CR13R14)p, p is 0, 1 or 2, R'3 and R14 independently are selected from hydrogen,CF3,OCF3,OCHF2 and C16alkyl, R'5 is hydrogen or C160alkyl, D is aryl or heteroaryl, which may optionally be substituted with one or more substituents R'6, , R'8, R'9, R20 and R21, wherein R16, R17, R18 and R19 independently are hydrogen, halogen,CN,CH2CN,CHF2,CF3,OCF3,OCHF2,OCHzCF3, OCF2CHF2, S(O)2CF3, SCF3, NO2, OR22, NR22R23, SR22, NR22S(O)2R23, S(O)2NR22R23, S(O)NR22R23, S(O)R22, S(O)2R22, C(O)NR22R23, OC(O)NR22R23, NR22C(O)R23, CH2C(O)NR22R23, OCH2C(O)NR22R23, CH2OR22, CH2NR22R23, OC (O) R,C (O) R orC (O) OR C, 6alkyl, C24alkenyl or C26alkynyl, which may optionally be substituted with one or more substituents selected from halogen,CN,CF3,OCHF2,OCF3,NO2,OR22,NR22R23 and C16alkyl, C38cycloalkyl, C48cycloalkenyl, heterocyclyl, C38cycloalkylC16alkyl, C34cyclo alkylC16alkoxy, C38cycloalkyloxy, C38cyaloalkylC16alkylthio, C38cycloalkylthio, C38cycloalkylC26alkenyl, C38cycloalkylC26alkynylo, C48cycloalkenylC16alkyl, C48cycloalkylenC26alkenyl, C48cycloalkenylC26alkynyl, heterocyclcylC16alkyl, heterocyclylC26alkenyl, heterocyclylC26alkynyl, aryl, aryloxy, aryloxycarbonyl, aroyl, arylC16alkoxy, arylC16alkyl, arylC26alkenyl, arylC26alkynyl, heteroaryl, heteroarylC, 6alkyl, heteroarylC24alkenyl or heteroarylC24alkynyl, of which the aromatic and nonaromatic ring systems optionally may be substituted with one or more substituents selected from halogen (O) OR22,CN,CF3,OCF3, OCHF2, NO2, OR22, NR22R23 and C16alkyl, R22 and R23 independently are hydrogen, C16alkyl, arylC16alkyl or aryl, or R22 and R23 when attached to the same nitrogen atom together with the said nitrogen atom may form a 3 to 8 membered heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulfur, and optionally containing one or two double bonds, or two of the groups R16 to R'9 when placed in adjacent positions together may form a bridge (CR24R25)aO(CR26R27)cO, a is 0, 1 or 2, cis 1 or 2, R24, R25, R26 and R27 independently are hydrogen, C16alkyl or fluoro, R20 and R21 independently are hydrogen, C16alkyl, C38cycloalkyl or C3$cyclo alkylC, 4alkyl, E is C3cycloalkyl or C44cycloalkenyl, which may optionally be substituted with one or two sub stituents R and R, which are independently selected from # hydrogen, halogen, CN, CF3, OCF3, OCHF2, OR33, NR33R34, C16alkyl, C38 cycloalkyl, C44cycloalkenyl, heteroaryl and aryl, wherein the heteroaryl and aryl groups optionally may be substituted with one or more substituents selected from halogen,CN,CF3,OCF3,OCHF2,NO2,oR33, NR33R34 and C, 6alkyl, R33 and R34 independently are hydrogen or C16alkyl, or R33 and R34 when attached to the same nitrogen atom together with the said nitro gen atom may form a 3 to 8 membered heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulfur, and optionally containing one or two double bonds, aryl, heteroaryl, arylC26alkenyl or arylC26alkynyl, of which the aryl and heteroaryl moieties may optionally be substituted with one or more substitutents R, R, RR3'and R wherein R26 and R29 are as defined above, and R30, R31 and R32 are independently selected from hydrogen, halogne, CHF2, CF3, OCF3, OCHF2, OCH2CF3, OCF2CHF2, SCF3, NR35R36, SR35, S(O)R35, S(O)WR35, C(O)NR35R36, OC(O)NR35R36, NR35C(O)R36, OCH2C(O)NR35R36, C(O)R35 andC (O) OR35, # C16alkyl, C26alkenyl and C26alkynyl, which may optionally be substituted with one or more substituents selected from halogen, CN, CF3, OCF3, OCHF2, NO2, OR35, NR35R36 and C,. 6alkyl, C3. 8cycloalkyl, C48cycloalkenyl, heterocyclyl, C38cycloalkylC, ealkyl, C34cyclo alkylC26alkenyl, C38cycloalkylC26alkynyl, C48cycloalkenylC16alkyl, C48cyclo alkenylC2alkenyl, C48cycloalkenylC24alkynyl, heterocyclylC, 6alkyl, heterocy clylC26alkenyl, heterocyclylC26alkynyo, aryl, aryloxy, aroyl, arylC16alkoxy, aryl C16alkyl, arylC26alkenyl, arylC26alkynyo, heteroaryl, heteroarylC16alkyl, hetero arylC26alkenyl and heteroarylC26alkynyl, of which the aromatic and nonaromatic ring systems optionally may be substituted with one or more substituents selected from halogen,CN,CF3,OCF3,OCHF2, NO2,oR35,NR35R36 and C16alkyl, wherein R35 and R36 independently are hydrogen, C16alkyl or aryl, or R35 and R36 when attached to the same nitrogen atom together with the said nitro gen atom may form a 3 to 8 membered heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulfur, and optionally containing one or two double bonds, or two of the substituents R30, R31 and R32 when attached to the same ring carbon atom or adjacent ring carbon atoms together may form a bridge0 (CHZ),CR3'R38 (CH2)IO, (CH2)tCR37R38(CH2)l or S(CH2)tCR37R38(CH2)IS, t and I independently are 0,1, 2,3, 4 or 5, R37 and R38 independently are hydrogen or C, 4alkyl, as well as any diastereomer or enantiomer or tautomeric form thereof including mixtures of these or a pharmaceutical acceptable salt thereof.
2. A compound according to claim 1, wherein A is wherein m, n and R4 are as defined in claim 1.
3. A compound according to claim 2, wherein A is.
4. A compound according to claim 2, wherein A is.
5. A compound according to claim 1, wherein A is.
6. A compound according to any one of the preceding claims, wherein X is monocyclic ary lene or heteroarylene, which may optionally be substituted as defined in claim 1.
7. A compound according to any one of the preceding claims, wherein X is wherein R6 and R7 are as defined in claim 1.
8. A compound according to claim 7, wherein X is wherein R6 and R 7 are as defined in claim 1. 9.
9. A compound according to claim 7 or 8, wherein R6 and R7 are both hydrogen.
10. A compound according to any one of the preceding claims, wherein E is wherein R28, R29, R30, R31 and R32 are as defined in claim 1.
11. A compound according to claim 10, wherein E is wherein R28, R29, R30, R3'and R32 are as defined in claim 1.
12. A compound according to claim 11, wherein E is wherein R3°, R31 and R32 are as defined in claim 1.
13. A compound according to claim 12, wherein E is wherein R3°, R31 and R32 are as defined in claim 1.
14. A compound according to claim 11, wherein E is wherein R28, R29, R30, R3'and R32 are as defined in claim 1.
15. A compound according to any one of the claims 10 to 14, wherein R30, R3'and R32 inde pendently are * hydrogen, halogen,OCF3,SCF3,OCHF2 orCF3, C, 6alkyl, which may optionally be substituted with one or more substituents selected from fluoro, CN, CF3, OCF3, OR35 and NR35R36, C38cycloalkyl or C48cycloalkenyl, which may optionally be substituted with one or more substituents selected from fluoro, CN, CF3, OCF3, OR35, NR35R36 and C, 6alkyl, # aryl, aryloxy or arylC, 4alkoxy, of which the aryl moieties may optionally be substi tuted with one or more substituents selected from halogen,CN,CF3,OCF3,NO2, R35, NR35R36 and C16alkyl, R35 and R36 independently are hydrogen, C16alkyl or aryl, or R35 and R36 when attached to the same nitrogen atom together with the said nitro gen atom may form a 3 to 8 membered heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulfur, and optionally containing one or two double bonds.
16. A compound according to claim 15, wherein R3°, R3'and R32 independently are hydrogen, # halogen, OCF3, OCHF2 or SCF3, # C16alkyl, which may optionally be substituted with one or more substituents selected from fluoro,CN,CF3,OCF3,OR35 andNR35R36, # cyclohexyl or cyclohex1enyl, which may optionally be substituted with one or more substituents selected from fluoro,CN,CF3,OCF3,oR35,NR35R36 and C16alkyl, 'phenyl which may optionally be substituted with one or more substitutents selected from halogen, CN, CF3, OCF3, NO2, OR35, NR35R36 and C16alkyl, # phenoxy or benzyloxy, of which the phenyl moieties may optionally be substituted with one or more substituents selected from halogen,CN,CF3,OCF3,NO2,OR35, NR35R36 and C, 4alkyl, R35 and R36 independently are hydrogen or C, 6alkyl.
17. A compound according to any one of the claims 10 to 16, wherein R30 and R32 are both hydrogen, and R3'is different from hydrogen.
18. A compound according to claim 10, wherein E is.
19. A compound according to claim 18, wherein E is.
20. A compound according to claim 18 wherein E is.
21. A compound according to claim 10, wherein E is wherein R30 is as defined in claim 1.
22. A compound according to claim 21, wherein R30 is halogen or heteroaryl, which may optionally be substituted with one or more substituents se lected from halogen, CN, CF3, NO2, OR35, NR35R36 and C16alkyl, R35 and R36 independently are hydrogen or C, 4alkyl, or R35 and R36 when attached to the same nitrogen atom together with the said nitro gen atom may form a 3 to 8 membered heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulfur, and optionally containing one or two double bonds.
23. A compound according to claim 22, wherein R30 is halogen or thienyl, which may optionally be substituted with one or more substituents selected from halogen,CN,CF3,NO2,oR35,NR35R36 and C, 4alkyl R35 and R36 independently are hydrogen or C, 6alkyl, or R35 and R36 when attached to the same nitrogen atom together with the said nitro gen atom may form a 3 to 8 membered heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulfur, and optionally containing one or two double bonds.
24. A compound according to claim 23 wherein E is.
25. A compound according to any one of the preceding claims, wherein Y isC (O),O, S(O)2, NH or CH2.
26. A compound according to any one of the preceding claims 1 to 24, wherein Y isCHR", wherein R"is combined with R'to form a double bond.
27. A compound according to claim 25, wherein Y isC (O).
28. A compound according to any one of the preceding claims 1 to 25, or 27, wherein R'and R2 are both hydrogen.
29. A compound according to any one of the preceding claims 1 to 25 or 27, wherein R'and R2 are combined to form a double bond.
30. A compound according to any one of the preceding claims, wherein R3 is hydrogen.
31. A compound according to any one of the preceding claims, wherein Z is C O)(CR13R14)p, O(CR13R14)p, NR15(CR13R14)p or S(O)2(CR13R14)p, wherein p, R13, R14 and R'5 are as definedin claim 1.
32. A compound according to claim 31, wherein Z is NR159CR13R14)p or C(O)(CR13R14)p, wherein p is as defined in claim 1, and R13 and R14 independently are selected from hydro gen,CF3,OCF3 and C,. 6alkyl and R'5 is hydrogen.
33. A compound according to claim 32, wherein Z isNH (CH2) p orC (O)(CH2)p, wherein p is as defined in claim 1.
34. A compound according to claim 33, wherein Z is NH orC (O).
35. A compound according to claim 34, wherein Z isC (O).
36. A compound according to any one of the preceding claims, wherein D is wherein R'6, R'7, R'8, R'9, R20 and R21 are as defined in claim 1.
37. A compound according to claim 36, wherein D is wherein R'6, R17 and R18 are as defined in claim 1.
38. A compound according to claim 37, wherein R16, R'7 and R18 independently are a hydrogen, halogen,CN,CH2CN,CHF2,CF3,OCF3,OCHF2,OCH2CF3, OCF2CHF2, S(O)2CF3, SCF3, NO2, OR22, NR22R23, SR22, NR22S(O)2R23, S(O)2NR22R23, S(O)NR22R23, S(O)R22, S(O)2R22, C(O)NR22R23, OC(O)NR22R23, NR22C(O)R23, CH2C(O)NR22R23, OCH2C(O)NR22R23, CH2OR22, CH2NR22R23, OC(O)R22, C(O)R22 orC (O) OR22, a C,alkyl, which may optionally be substituted with one or more substituents selected from fluoro,CN,CF3,OCF3,OR22 andNR22R23, * Cmcycloalkyl, which may optionally be substituted with one or more substituents se lected from fluoro,C (O) OR24,CN,CF3,OCF3,OR22,NR22R23 and C16alkyl, aryl or aryloxy, which may optionally be substituted with one or more substituents se lected from halogen (O) OR22,CN,CF3,OCF3,NO2,OR22,NR22R23 and C36alkyl, R22 and R23 independently are hydrogen, C, 6alkyl, arylC16alkyl or aryl, or R22 and R23 when attached to the same nitrogen atom together with the said nitrogen atom may form a 3 to 8 membered heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulfur, and optionally containing one or two double bonds, # or two of the groups R16 to R'8 when placed in adjacent positions together may form a bridge(CR24R25)aO(CR26R27)cO, a is 0,1 or 2, c is 1 or 2, R24, R25, R26 and R27 independently are hydrogen, C16alkyl or fluoro.
39. A compound according to claim 38, wherein Rl5, R17 and R18 independently are # hydrogen, halogen, CF3, OCF3, SCF3, C16alkyl, C16alkoxy, phenyl, cyclopentyl, cyclohexyl or phenoxy, # or two of the groups Rt5 to R18 when placed in adjacent positions together may form a bridge O(CF2)2O, CF2OCF2O or OCH2O.
40. A compound according to any one of the claims 36 to 39, wherein R16 is hydrogen, and R'7 and R18 are different from hydrogen.
41. A compound according to any one of the claims 36 to 39, wherein R16 and R'7 are hydro gen, and R18 is different from hydrogen.
42. A compound according to claim 1 of the general formula (14) : wherein R6, R7, E and D are as defined in any one of the preceding claims 1,10 to 22 or 36 to 41, as well as any diastereomer or enantiomer or regioisomer or tautomeric form thereof including mixtures of these or a pharmaceutical acceptable salt thereof.
43. A compound according to claim 1 of the general formula (15) : wherein R6, R7, E and D are as defined in any one of the preceding claims 1,10 to 24 or 36 to 39 as well as any diastereomer or enantiomer or regioisomer or tautomeric form thereof including mixtures of these or a pharmaceutical acceptable salt thereof.
44. A compound according to claim 43 represented by the general formula : wherein R6, R7, E and D are as defined in any one of the preceding claims 1,10 to 24 or 36 to 41, as well as any diastereomer or enantiomer or regioisomer or tautomeric form thereof including mixtures of these or a pharmaceutical acceptable salt thereof.
45. A compound according to claim 43 represented by the general formula: wherein Re, R7, E and D are as defined in any one of the preceding claims 1,10 to 24 or 36 to 41, as well as any diastereomer or enantiomer or regioisomer or tautomeric form thereof including mixtures of these or a pharmaceutically acceptable salt thereof.
46. A compound according to claim 1 of the general formula (16) : wherein R8, R7, E and D are as defined in any one of the preceding claims 1,10 to 24 or 36 to 41, as well as any diastereomer or enantiomer or regioisomer or tautomeric form thereof including mixtures of these or a pharmaceutical acceptable salt thereof.
47. A compound according to any one of the preceding claims, which has an IC50 value of no greater than 5 AM as determined by the Glucagon Binding Assay (I) or Glucagon Binding As say (II) disclosed herein.
48. A compound according to claim 47, which has an ICso value of less than 1 M, prefera bly of less than 500 nM and even more preferred of less than 100 nM as determined by the Glucagon Binding Assay (I) or Glucagon Binding Assay (II) disclosed herein.
49. A compound according to any one of the preceding claims, which is an agent useful for the treatment of an indication selected from the group consisting of hyperglycemia, IGT, type 2 diabetes, type 1 diabetes, dyslipidemia and obesity.
50. A compound according to any one of the claims 1 to 49 for use as a medicament.
51. A pharmaceutical composition comprising, as an active ingredient, at least one com pound according to any one of the claims 1 to 49 together with one or more pharmaceutical acceptable carriers or excipients.
52. A pharmaceutical composition according to claim 51 in unit dosage form, comprising from about 0.05 mg to about 1000 mg, preferably from about 0.1 mg to about 500 mg and espe cially preferred from about 0.5 mg to about 200 mg of the compound according to any one of the claims 1 to 49.
53. Use of a compound according to any one of the claims 1 to 49 for the preparation of a medicament for the treatment of disorders or diseases, wherein a glucagon antagonistic ac tion is beneficial.
54. Use of a compound according to any one of the claims 1 to 49 for the preparation of a medicament for the treatment of glucagonmediated disorders and diseases.
55. Use of a compound according to any one of the claims 1 to 49 for the preparation of a medicament for the treatment of hyperglycemia.
56. Use of a compound according to any one of the claims 1 to 49 for the preparation of a medicament for lowering blood glucose in a mammal.
57. Use of a compound according to any one of the claims 1 to 49 for the preparation of a medicament for the treatment of IGT.
58. Use of a compound according to any one of the claims 1 to 49 for the preparation of a medicament for the treatment of type 2 diabetes.
59. Use according to claim 58 for the preparation of a medicament for the delaying or pre vention of the progression from IGT to type 2 diabetes.
60. Use according to claim 58 for the preparation of a medicament for the delaying or pre vention of the progression from noninsulin requiring type 2 diabetes to insulin requiring type 2 diabetes.
61. Use of a compound according to any one of the claims 1 to 49 for the preparation of a medicament for the treatment of type 1 diabetes.
62. Use of a compound according to any one of the claims 1 to 49 for the preparation of a medicament for the treatment of obesity.
63. Use of a compound according to any one of the claims 1 to 49 for the preparation of a medicament for the treatment of dyslipidemia.
64. Use according to any one of the claims 53 to 61 in a regimen which comprises treatment with a further antidiabetic agent.
65. Use according to any one of the claims 53 to 62 in a regimen which comprises treatment with a further antiobesity agent.
66. Use according to any one of the claims 53 to 62 in a regimen which additionally com prises treatment with a further antihyperlipidemic agent.
67. Use according to any one of the claims 53 to 63 in a regimen which additionally com prises treatment with an antihypertensive agent.
68. A method for the treatment of disorders or diseases, wherein a glucagon antagonistic ac tion is beneficial, the method comprising administering to a subject in need thereof an effec tive amount of a compound according to any one of the claims 1 to 49 or a pharmaceutical composition according to claim 51 or 52.
69. The method according to claim 68, wherein the effective amount of the compound is in the range of from about 0.05 mg to about 2000 mg, preferably from about 0.1 mg to about 1000 mg and especially preferred from about 0.5 mg to about 500 mg per day.
Description:
NOVEL GLUCAGON ANTAGONISTS FIELD OF THE INVENTION The present invention relates to agents that act to antagonize the action of the glu- cagon peptide hormone on the glucagon receptor. More particularly, it relates to glucagon antagonists or inverse agonists.

BACKGROUND OF THE INVENTION Glucagon is a key hormonal agent that, in co-operation with insulin, mediates ho- meostatic regulation of the amount of glucose in the blood. Glucagon primarily acts by stimu- lating certain cells (mostly liver cells) to release glucose when blood glucose levels fall. The action of glucagon is opposite to that of insulin, which stimulates cells to take up and store glucose whenever blood glucose levels rise. Both glucagon and insulin are peptide hor- mones.

Glucagon is produced in the alpha islet cells of the pancreas and insulin in the beta islet cells. Diabetes mellitus is a common disorder of glucose metabolism. The disease is characterized by hyperglycemia and may be classified as type 1 diabetes, the insulin- dependent form, or type 2 diabetes, which is non-insulin-dependent in character. Subjects with type 1 diabetes are hyperglycemic and hypoinsulinemic, and the conventional treatment for this form of the disease is to provide insulin. However, in some patients with type 1 or type 2 diabetes, absolute or relative elevated glucagon levels have been shown to contribute to the hyperglycemic state. Both in healthy control animals as well as in animal models of type 1 and type 2 diabetes, removal of circulating glucagon with selective and specific anti- bodies has resulted in reduction of the glycemic level. These studies suggest that glucagon suppression or an action that antagonizes glucagon could be a useful adjunct to conventional treatment of hyperglycemia in diabetic patients. The action of glucagon can be suppressed by providing an antagonist or an inverse agonist, ie substances that inhibit or prevent gluca- gon-induced responses. The antagonist can be peptidic or non-peptidic in nature.

Native glucagon is a 29 amino acid peptide having the sequence: His-Ser-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Tyr-Ser-Lys-Tyr-Leu-Asp- Ser-Arg-Arg-Ala-Gln-Asp- Phe-Val-Gln-Trp-Leu-Met-Asn-Thr-OH Glucagon exerts its action by binding to and activating its receptor, which is part of the Glucagon-Secretin branch of the 7-transmembrane G-protein coupled receptor family.

The receptor functions by activating the adenylyl cyclase second messenger system and the result is an increase in cAMP levels.

Several publications disclose peptides that are stated to act as glucagon antago- nists. Probably, the most thoroughly characterized antagonist is DesHis' [Glu9]-glucagon am- ide (Unson et al., Peptides 10, 1171 (1989); Post et al., Proc. Natl. Acad. Sci. USA 90, 1662 (1993) ). Other antagonists are DesHis', Phe6 [Glul-glucagon amide (Azizh et al., Bioorganic & Medicinal Chem. Lett. 16,1849 (1995) ) and NLeu9, Ala"-"-glucagon amide (Unson et al., J. Biol. Chem. 269 (17), 12548 (1994)).

Peptide antagonists of peptide hormones are often quite potent. However, they are generally known not to be orally available because of degradation by physiological enzymes, and poor distribution in vivo. Therefore, orally available non-peptide antagonists of peptide hormones are generally preferred. Among the non-peptide glucagon antagonists, a quinoxa- line derivative, (2-styryl-3- [3- (dimethylamino) propylmethylamino]-6, 7-dichloroquinoxaline was found to displace glucagon from the rat liver receptor (Collins, J. L. et al., Bioorganic and Me- dicinal Chem. Lett. 2 (9): 915-918 (1992) ). WO 94/14426 (The Welcome Foundation Limited) discloses use of skyrin, a natural product comprising a pair of linked 9, 10-anthracenedione groups, and its synthetic analogues, as glucagon antagonists. US 4,359, 474 (Sandoz) dis- closes the glucagon inhibiting properties of 1-phenyl pyrazol derivatives. US 4,374, 130 (Sandoz) discloses substituted disilacyclohexanes as glucagon inhibiting agents. WO 98/04528 (Bayer Corporation) discloses substituted pyridines and biphenyls as glucagon an- tagonists. US 5, 776,954 (Merck & Co., lnc.) discloses substituted pyridyl pyrroles as gluca- gon antagonists and WO 98/21957, WO 98/22108, WO 98/22109 and US 5, 880,139 (Merck & Co., Inc.) disclose 2, 4-diaryl-5-pyridylirnidazoles as glucagon antagonists. Furthermore, WO 97/16442 and US 5,837, 719 (Merck & Co., Inc.) disclose 2,5-substituted aryl pyrroles as glucagon antagonists. WO 98/24780, WO 98/24782, WO 99/24404 and WO 99/32448 (Am- gen Inc.) disclose substituted pyrimidinone and pyridone compounds and substituted pyrimidine compounds, respectively, which are stated to possess glucagon antagonistic ac- tivity. Madsen et al. (J. Med. Chem. 1998 (41) 5151-7) discloses a series of 2-(benzimidazol- 2-ylthio)-1- (3, 4-dihydroxyphenyl)-1-ethanones as competitive human glucagon receptor an- tagonists. WO 99/01423 and WO 00/39088 (Novo Nordisk A/S) disclose different series of alkyliden hydrazides as glucagon antagonists/inverse agonists. WO 00/69810, WO 02/00612, WO 02/40444, WO 02/40445 and WO 02/40446 (Novo Nordisk A/S) disclose further classes of glucagon antagonists.

These known glucagon antagonists differ structurally from the present compounds.

DEFINITIONS The following is a detailed definition of the terms used to describe the compounds of the invention: "Halogen"designates an atom selected from the group consisting of F, Cl, Br and 1.

The term"C14-alkyl"as used herein represents a saturated, branched or straight hy- drocarbon group having from 1 to 6 carbon atoms. Representative examples include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, tert-pentyl, n-hexyl, isohexyl and the like.

The term"C2-6-alkenyl"as used herein represents a branched or straight hydrocar- bon group having from 2 to 6 carbon atoms and at least one double bond. Examples of such groups include, but are not limited to, vinyl, 1-propenyl, 2-propenyl, iso-propenyl, 1,3-buta- dienyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-methyl-1-propenyl, 1-pentenyl, 2-pentenyl, 3-pent- enyl, 4-pentenyl, 3-methyl-2-butenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 2, 4-hexadienyl, 5- hexenyl and the like.

The term"C24-alkynyl"as used herein represents a branched or straight hydrocar- bon group having from 2 to 6 carbon atoms and at least one triple bond. Examples of such groups include, but are not limited to, ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4- hexynyl, 5-hexynyl, 2, 4-hexadiynyl and the like.

The term"C,-alkoxy"as used herein refers to the radical-O-C, 4-alkyl wherein C, 4-alkyd is as defined above. Representative examples are methoxy, ethoxy, n-propoxy, iso- propoxy, butoxy, sec-butoxy, tert-butoxy, pentoxy, isopentoxy, hexoxy, isohexoxy and the like.

The term"C34-cycloalkyl"as used herein represents a saturated, carbocyclic group having from 3 to 8 carbon atoms. Representative examples are cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl and the like.

The term"C4-8-CYCloalkenyl"as used herein represents a non-aromatic, carbocyclic group having from 4 to 8 carbon atoms containing one or two double bonds. Representative examples are 1-cyclopentenyl, 2-cyclopentenyl, 3-cyclopentenyl, 1-cyclohexenyl, 2-cyclo- hexenyl, 3-cyclohexenyl, 2-cycloheptenyl, 3-cycloheptenyl, 2-cyclooctenyl, 1, 4-cycloocta- dienyl and the like.

The term"heterocyclyl"as used herein represents a non-aromatic 3 to 10 membered ring containing one or more heteroatoms selected from nitrogen, oxygen and sulfur and option- ally containing one or two double bonds. Representative examples are pyrrolidinyl, piperidyl, piperazinyl, morpholinyl, thiomorpholinyl, aziridinyl, tetrahydrofuranyl and the like.

The term"aryl"as used herein is intended to include carbocyclic, aromatic ring sys- tems such as 6 membered monocyclic and 9 to 14 membered bi-and tricyclic, carbocyclic, aromatic ring systems. Representative examples are phenyl, biphenyl, naphthyl, anthracenyl, phenanthrenyl, fluorenyl, indenyl, azulenyl and the like. Aryl is also intended to include the partially hydrogenated derivatives of the ring systems enumerated above. Non-limiting ex- amples of such partially hydrogenated derivatives are 1,2, 3, 4-tetrahydronaphthyl, 1,4- dihydronaphthyl, indanyl and the like.

The term"arylene"as used herein is intended to include divalent, carbocyclic, aro- matic ring systems such as 6 membered monocyclic and 9 to 14 membered bi-and tricyclic, divalent, carbocyclic, aromatic ring systems. Representative examples are phenylen, bi- phenylen, naphthylene, anthracenylene, phenanthrenylene, fluorenylene, indenylene, az- ulenylene and the like. Arylene is also intended to include the partially hydrogenated deriva- tives of the ring systems enumerated above. Non-limiting examples of such partially hydro- genated derivatives are 1,2, 3, 4-tetrahydronaphthylene, 1, 4-dihydronaphthylene and the like.

The term"aryloxy"as used herein denotes a group-O-aryl, wherein aryl is as defined above.

The term"aroyl"as used herein denotes a group-C (O)-aryl, wherein aryl is as defined above.

The term Cl. 4-alkanol as used herein denotes a group-C (O)-C, 4-alkyl, wherein Ci.

6-alkyl is as defined above.

The term"heteroaryl"as used herein is intended to include aromatic, heterocyclic ring systems containing one or more heteroatoms selected from nitrogen, oxygen and sulfur such as 5 to 7 membered monocyclic and 8 to 14 membered bi-and tricyclic aromatic, het- erocyclic ring systems containing one or more heteroatoms selected from nitrogen, oxygen and sulfur. Representative examples are furyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, isoxazolyl, isothiazolyl, 1, 2, 3-triazolyl, 1,2, 4-triazolyl, pyranyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, 1, 2, 3-triazinyl, 1, 2, 4-triazinyl, 1,3, 5- triazinyl, 1,2, 3-oxadiazolyl, 1,2, 4-oxadiazolyl, 1,2, 5-oxadiazolyl, 1, 3, 4-oxadiazolyl, 1,2, 3-thiadiazolyl, 1,2, 4-thiadiazolyl, 1,2, 5-thiadiazolyl, 1,3, 4-thiadiazolyl, tetrazolyl, thiadiazinyl, indolyl, isoindolyl, benzofuryl, benzothienyl, inda- <BR> <BR> zolyl, benzimidazolyl, benzthiazolyl, benzisothiazolyl, benzoxazolyl, benzisoxazolyl, purinyl, quinazolinyl, quinolizinyl, quinolinyl, isoquinolinyl, quinoxalinyl, naphthyridinyl, pteridinyl, car- bazolyl, azepinyl, diazepinyl, acridinyl and the like. Heteroaryl is also intended to include the partially hydrogenated derivatives of the ring systems enumerated above. Non-limiting ex- amples of such partially hydrogenated derivatives are 2, 3-dihydrobenzofuranyl, pyrrolinyl, pyrazolinyl, indolinyl, oxazolidinyl, oxazolinyl, oxazepinyl and the like.

The term"heteroarylene"as used herein is intended to include divalent, aromatic, heterocyclic ring systems containing one or more heteroatoms selected from nitrogen, oxy- gen and sulfur such as 5 to 7 membered monocyclic and 8 to 14 membered bi-and tricyclic aromatic, heterocyclic ring systems containing one or more heteroatoms selected from nitro- gen, oxygen and sulfur. Representative examples are furylene, thienylene, pyrrolylene, oxa- zolylene, thiazolylene, imidazolylene, isoxazolylene, isothiazolylene, 1,2, 3-triazolylene, 1,2, 4- triazolylene, pyranylene, pyridylene, pyridazinylene, pyrimidinylene, pyrazinylene, 1,2, 3-tri- azinylene, 1,2, 4-triazinylene, 1,3, 5-triazinylene, 1,2, 3-oxadiazolylene, 1,2, 4-oxadiazolylene, 1,2, 5-oxadiazolylene, 1,3, 4-oxadiazolylene, 1,2, 3-thiadiazolylene, 1,2, 4-thiadiazolylene, 1,2, 5- thiadiazolylene, 1,3, 4-thiadiazolylene, tetrazolylene, thiadiazinylene, indolylene, isoindolylene, benzofurylene, benzothienylene, indazolylene, benzimidazolylene, benzthiazolylene, benz- isothiazolylene, benzoxazolylene, benzisoxazolylene, purinylene, quinazolinylene, quinoliz- <BR> <BR> <BR> <BR> inylene, quinolinylene, isoquinolinylene, quinoxalinylene, naphthyridinylene, pteridinylene, carbazolylene, azepinylene, diazepinylene, acridinylene and the like. Heteroaryl is also in- tended to include the partially hydrogenated derivatives of the ring systems enumerated above. Non-limiting examples of such partially hydrogenated derivatives are 2, 3-dihydro- benzofuranylene, pyrrolinylene, pyrazolinylene, indolinylene, oxazolidinylene, oxazolinylene, oxazepinylene and the like.

"Aryl-C,. 6-alkyl","heteroaryl-C,. -alkyl","aryl-C2-6-alkenyl"etc. mean C, 4-alkyl or C24- alkenyl as defined above, substituted by an aryl or heteroaryl as defined above, for example: The term"optionally substituted"as used herein means that the groups in question are either unsubstituted or substituted with one or more of the substituents specified. When the groups in question are substituted with more than one substituent the substituents may be the same or different.

Certain of the above defined terms may occur more than once in the structural formulae, and upon such occurrence each term shall be defined independently of the other.

Furthermore, when using the terms"independently are"and"independently selected from"it should be understood that the groups in question may be the same or different.

The term"treatment"as used herein means the management and care of a patient for the purpose of combating a disease, disorder or condition. The term is intended to include the delaying of the progression of the disease, disorder or condition, the alleviation or relief of symptoms and complications, and/or the cure or elimination of the disease, disorder or condi- tion. The patient to be treated is preferably a mammal, in particular a human being.

DESCRIPTION OF THE INVENTION The present invention relates to a compound of the general formula (I):

wherein A is mis0or1, n is 0, 1, 2 or 3, with the proviso that m and n must not both be 0, R4 is hydrogen, halogen or- (CH2) o-OR5, ois0 or1, R5 is hydrogen, C1-6-alkyl, C1-6-alkanoyl, aryl or aryl-C1-6-alkyl, R'and R2 independently are hydrogen, halogen or C, 4-alkyl, or R'and R2 are combined to form a double bond,

R3 is hydrogen, C1-6-alkyl or halogen, or R3 and RZ are combined to form a double bond to oxygen, X is arylene or heteroarylene, which may optionally be substituted with one or two groups R6 and R7 selected from halogen,-CN,-CF3,-OCF3,-OCHF2,-NO2,-OR8,-NR8R9 and C, 6-alkyl, R3 and R9 independently are hydrogen or C1-6-alkyl, Y is -C(O)-, -O-, -NR10-, -S-, -S(O)-, -S(O)2- or -CR11R12-, R'° is hydrogen or C1-6-alkyl R11 and R12 independently are hydrogen, C1-6-alkyl or hydroxy, or R"is combined with R'to form a double bond, and R12 is hydrogen, C1-6-alkyl or hydroxy, Z is -C(O)-(CR13R14)p-, -O-(CR13R14)p-, -S-(CR13R14)p-, -S(O)-(CR13R14)p-, -S(O)2-(CR13R14)p-, -NR15-(CR13R14)p- or -(CR13R14)p-, p is 0, 1 or 2, R'3 and R14 independently are selected from hydrogen,-CF3,-OCF3 and C1-6-alkyl, R'5 is hydrogen or C1-6-alkyl, D is aryl or heteroaryl, which may optionally be substituted with one or more substituents R16, R Rlg, R R20 and R21, wherein R15 R17 R'8 and R19 independently are # hydrogen, halogen, -CN, -CH2CN, -CHF2, -CF3, -OCF3, -OCHF2, -OCH2CF3, -OCF2CHF2, -S(O)2CF3, -SCF3, -NO2, -OR22, -NR22R23, -SR22, -NR22S(O)2R23, -S(O)2NR22R23, -S(O)NR22R23, -S(O)R22, -S(O)2R22, -C(O)NR22R23, -OC(O)NR22R23 -NR22C(O)R23, -CH2C(O)NR22R23, -OCH2C(O)NR22R23, -CH2OR22, -CH2NR22R23, -OC(O)R22, -C(O)R22 or -C(O)OR22,

# C1-6-alkyl, C2-6-alkenyl or C24-alkynyl, which may optionally be substituted with one or more substituents selected from halogen, -CN, -CF3, -OCF3, -OCHF2, -NO2, -OR22, -NR22R23 and C16-alkyl, # C3-8-cycloalkyl, C4-8-cycloalkenyl, heterocyclyl, C3. 8-cycloalkyl-C1-6-alkyl, C3-8-cyclo- alkyl-C1-6-alkoxy, C3-8-cycloalkyloxy, C3-8-cycloalkyl-C1-6-alkylthio, C3-8-cycloalkylthio, C3-8-cycloalkyl-C2-6-alkenyl, C3-8-cycloalkyl-C2-6-alkynyl, C4-8-cycloalkenyl-C1-6-alkyl, C4-8-cycloalkenyl-C2-6-alkenyl, C4-8-cycloalkenyl-C2-6-alkynyl, heterocyclyl-C1-6-alkyl, heterocyclyl-C24-alkenyl, heterocyclyl-C2-e-alkynyl, aryl, aryloxy, aryloxycarbonyl, aroyl, aryl-C1-6-alkoxy, aryl-C1-6-alkyl, aryl-C2-6-alkenyl, aryl-C2-6-alkynyl, heteroaryl, heteroaryl-C1-6-alkyl, heteroaryl-C2-6-alkenyl or heteroaryl-C2-6-alkynyl, of which the aromatic and non-aromatic ring systems optionally may be substituted with one or more substituents selected from halogen (O) OR2,-CN,-CF3,-OCF3, OCHF2, -NO2, -OR22, -NR22R23 and C1-6-alkyl, R22 and R23 independently are hydrogen, C1-6-alkyl, aryl-C1-6-alkyl or aryl, or R22 and R23 when attached to the same nitrogen atom together with the said nitrogen atom may form a 3 to 8 membered heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulfur, and optionally containing one or two double bonds, or two of the groups R16 to R'9 when placed in adjacent positions together may form a bridge - (CR24R25 )a-O-(CR26R27)c-O-, a is 0, 1 or 2, c is 1 or 2, Rz4, R25, R26 and R27 independently are hydrogen, C1-6-alkyl or fluoro, R20 and R2'independently are hydrogen, C1-6-alkyl, C3-8-cycloalkyl or C38-cyclo- alkyl-C,-alkyl,

E is C3-8-cycloalkyl or C4-8-cycloalkenyl, which may optionally be substituted with one or two sub- stituents R28 and R-9, which are independently selected from # hydrogen, halogen, -CN, -CF3, -OCF3, -OCHF2, -OR33, -NR33R34, C1-6-alkyl, C3-8- cycloalkyl, Cs8-cycloalkenyl, heteroaryl and aryl, wherein the heteroaryl and aryl groups optionally may be substituted with one or more substituents selected from halogen,-CN,-CF3,-OCF3,-OCHF2,-NO2,-OR33,- NR33R34 and C1-6-alkyl, R33 and R34 independently are hydrogen or C, 4-alkyl, or R33 and R34 when attached to the same nitrogen atom together with the said nitro- gen atom may form a 3 to 8 membered heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulfur, and optionally containing one or two double bonds, aryl, heteroaryl, aryl-C24-alkenyl or aryl-C26-alkynyl, of which the aryl and heteroaryl moieties may optionally be substituted with one or more substitutents R28, R29, R30, R3'and R32, wherein R28 and R29 are as defined above, and R30, R31 and R32 are independently selected from hydrogen, halogen,-CHF2,-CF3,-OCF3,-OCHF2,-OCH2CF3,-OCF2CHF2,-SCF3, -OR35, -NR35R36, -SR35, -S(O)R35, -S(O)2R35, -C(O)NR35R36, -OC(O)NR35R36 -NR35C(O)R36, -OCH2C(O)NR35R36, -C(O)R35 and-C (O) OR # C1-6-alkyl, C2-6alkenyl and C24-alkynyl, which may optionally be substituted with one or more substituents selected from halogen, -CN, -CF3, -OCF3, -OCHF2, -NO2, -OR35, -NR35R36 and C1-6-alkyl,

# C3-8-cycloalkyl, C4-8-cycloalkenyl, heterocyclyl, C3-8-cycloalkyl-C1-6-alkyl, C3-8-cyclo- alkyl-C2-6-alkenyl, C3-8-cycloalkyl-C2-6-alkynyl, C4-8-cycloalkenyl-C1-6-alkyl, C4-8-cyclo- lakenyl-C2-6-alkenyl, C4-8-cycloalkenyl-C2-6-alkynyl, heterocyclyl-C1-6-alkyl, heterocy- clyl-C2--alkenyl, heterocyclyi-C2-6-alkynyl, aryl, aryloxy, aroyl, aryl-C »-alkoxy, aryl- C1-6-alkyl, aryl-C2-6alkenyl, aryl-C2-6-alkynyl, heteroaryl, heteroaryl-C1-6-alkyl, hetero- aryl-C2-6-alkenyl and heteroaryl-C24-alkynyl, of which the aromatic and non-aromatic ring systems optionally may be substituted with one or more substituents selected from halogen,-CN,-CF3,-OCF3,-OCHF2,- NO2,-oR35,-NR35R36 and C1-6-alkyl, wherein R35 and R36 independently are hydrogen, Ci. 6-alkyl or aryl, or R35 and R36 when attached to the same nitrogen atom together with the said nitro- gen atom may form a 3 to 8 membered heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulfur, and optionally containing one or two double bonds, or two of the substituents R30, R3'and R32 when attached to the same ring carbon atom or adjacent ring carbon atoms together may form a bridgel-o-(CH2),-CR37R38- (CH2)@-O-, -(CH2)t-CR37R38-(CH2)@- or -S-(CH2)t-CR37R38-(CH2)i-S-, t and I independently are 0, 1, 2,3, 4 or 5, R37 and R38 independently are hydrogen or C, 4-alkyl, as well as any diastereomer or enantiomer or tautomeric form thereof including mixtures of these or a pharmaceutical acceptable salt thereof.

In another embodiment, A is wherein m, n and R4 are as defined for formula (I).

In another embodiment, A is

In another embodiment, A is In another embodiment, A is

In another embodiment, X is monocyclic arylene or heteroarylene, which may optionally be substituted as defined for formula (I).

In another embodiment, X is

wherein R 6and R 7are as defined for formula (I).

In another embodiment, X is wherein R6 and R7 are as defined for formula (I). In another embodiment, R6 and R7 are both hydrogen.

In another embodiment, E is

wherein R28, R29, R30, R31 and R32 are as defined for formula (I).

In another embodiment, E is wherein R28, R29, R30, R31 and R32 are as defined for formula (I).

In another embodiment, E is

wherein R30, R31 and R32 are as defined for formula (I).

In another embodiment, E is

wherein R30, R3'and R32 are as defined for formula (I).

In another embodiment E is

wherein R28, R29, R30, R31 and R32 are as defined for formula (I).

In another embodiment, R30, R31 and R32 are independently hydrogen, # halogen, -OCF3, -SCF3 or -CF3, # C1-6-alkyl, which may optionally be substituted with one or more substituents selected from fluoro, -CN, -CF3, -OCF3, -OR35 and -NR35R36,

# C3-8-cycloalkyl or C4-8-cycloalkenyl, which may optionally be substituted with one or more substituents selected from fluoro,-CN,-CF3,-OCF3,-oR35,-NR35R36 and C1-6-alkyl, aryl, aryloxy or aryl-C,. 6-alkoxy, of which the aryl moieties may optionally be substi- tuted with one or more substituents selected from halogen,-CN,-CF3,-OCF3,-NO2, -R35, -NR35R36 and C1-6-alkyl, R35 and R36 independently are hydrogen, C1-6-alkyl or aryl, or R35 and R36 when attached to the same nitrogen atom together with the said nitro- gen atom may form a 3 to 8 membered heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulfur, and optionally containing one or two double bonds.

In another embodiment, R30, R3'and R32 are independently hydrogen, # halogen, OCF3, or -SCF3, C1-alkyl, which may optionally be substituted with one or more substituents selected from fluoro, -CN, -CF3, -OCF3, -OR35 and -NR35R36, cyclohexyl or cyclohex-1-enyl, which may optionally be substituted with one or more substituents selected from fluoro,-CN,-CF3,-OCF3,-oR35,-NR35R36 and C1-6-alkyl, # phenyl which may optionally be substituted with one or more substitutents selected from halogen,-CN,-CF3,-OCF3,-N02,-OR35,-NR35R36 and C1-6-alkyl, 'phenoxy or benzyloxy, of which the phenyl moieties may optionally be substituted with one or more substituents selected from halogen,-CN,-CF3,-OCF3,-NO2,-OR35, -NR35R36 nad C1-6-alkyl, R35 and R36 independently are hydrogen or C1-6-alkyl.

In another embodiment, R30 nad R32 are both hydrogen, and R3'is different from hydrogen.

In another embodiment, E is

In another embodiment, E is In another embodiment E is

In another embodiment, E is

wherein R30 is as defined for formula (I).

In another embodiment, R30 is # halogen or

heteroaryl, which may optionally be substituted with one or more substituents se- lected from halogen, -CN, -CF3, -NO2, -OR35, -NR35R36 and C1-6-alkyl, R35 and R36 independently are hydrogen or C, 4-alkyl, or R35 and R36 when attached to the same nitrogen atom together with the said nitro- gen atom may form a 3 to 8 membered heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulfur, and optionally containing one or two double bonds.

In another embodiment, R30 is halogen or thienyl, which may optionally be substituted with one or more substituents selected from halogen,-CN,-CF3,-NO2,-oR35,-NR35R36 and C, 4-alkyl, R35 and R36 independently are hydrogen or C1-6-alkyl, or R35 and R36 when attached to the same nitrogen atom together with the said nitro- gen atom may form a 3 to 8 membered heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulfur, and optionally containing one or two double bonds.

In another embodiment, E is In another embodiment, Y is-C (0)-,-0-,-S (O) 2-,-NH-or-CHz-.

In another embodiment, Y is-CHR"-, wherein R"is combined with R'to form a double bond.

In another embodiment, Y is-C (O)-.

In another embodiment, R1 and R2 are both hydrogen.

In another embodiment, R1 and R2 are combined to form a double bond.

In another embodiment, R3 is hydrogen.

In another embodiment Z is-C (O)-(CR13R14)p-, -O-(CR13R14)p-, -NR15-(CR13R14)p or -S(O)2- (CR13R14)p-, wherein p, R'3, R'4 and R'5 are as defined for formula (I).

In another embodiment, Z is -NR15-(CR13R14)p or -C(O)-(CR13R14)p-, wherein p is as defined for formula (I), and R13 and R14 independently are selected from hydrogen, -CF3, -OCF3 and C, 6-alkyl and R'5 is hydrogen.

In another embodiment, Z is-NH (CH2) p or-C (O)-(CH2) p-, wherein p is as defined for formula (I).

In another embodiment, Z is NH or-C (O)-.

In another embodiment Z is-C (O)-.

In another embodiment, D is

wherein R'6, R17, R18, R19, R20 and R21 are as defined for formula (I).

In another embodiment, D is wherein R'6, R"and R'8 are as defined for formula (I).

In another embodiment, R16, R17 and R18 are independently hydrogen, halogen,-CN,-CH2CN,-CHF2,-CF3,-OCF3,-OCHF2,-OCH2CF3, -OCF2CHF2, -S(O)2CF3, -SCF3, -NO2, -OR22, -NR22R23, -SR22, -NR22S(O)2R23, -S(O)2NR22R23, -S(O)NR22R23, -S(O)R22, -S(O)2R22, -C(O)NR22R23, -OC(O)NR22R23, - R22C (O) R23, -CH2C(O)NR22R23, -OCH2C(O)NR22R23, -CH2OR22, -CH2NR22R23, -OC(O)R22, -C(O)R22 or-C (O) OR # C1-6-alkyl, which may optionally be substituted with one or more substituents selected from fluoro,-CN,-CF3,-OCF3,-OR22 and-NR22R23,

# C3-8-cycloalkyl, which may optionally be substituted with one or more substituents se- lected from fluoro, -C(O)OR24, -CN, -CF3, -OCF3, -OR22, -NR22R23 and C1-6-alkyl, aryl or aryloxy, which may optionally be substituted with one or more substituents se- lected from halogen (O) OR22-, -CN, -CF3, -OCF3, -NO2, -OR22, -NR22R23 and C, 6-alkyl, R22 and R23 independently are hydrogen, C1-6-alkyl, aryl-C1-6-alkyl or aryl, or R22 and R23 when attached to the same nitrogen atom together with the said nitrogen atom may form a 3 to 8 membered heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulfur, and optionally containing one or two double bonds, or two of the groups R16 to R'8 when placed in adjacent positions together may form a bridge -(CR24R25)a-O-(CR26R27)c-O-, a is 0,1 or 2, cis 1 or 2, R24, R25, R26 and R27 independently are hydrogen, C1-6-alkyl or fluoro.

In another embodiment, R'6, R17 and R18 are independently # hydrogen, halogen, -CF3, -OCF3, -SCF3, C1-6-alkyl, C1-6-alkoxy, phenyl, cyclopentyl, cyclohexyl or phenoxy, 'or two of the groups R16 to R'8 when placed in adjacent positions together may form a bridge-O-(CF2) 2-O-,-CF2-O-CF2-O-or-O-CH2-O-.

In another embodiment, R16 is hydrogen, and R'7 and R18 are different from hydrogen.

In another embodiment, R16 and R17 are hydrogen, and R'8 is different from hydrogen.

In another embodiment, the invention relates to a compound of the general formula (14) :

wherein R6, R7, E and D are as defined for formula (I) or in any one of the above embodi- ments, as well as any diastereomer or enantiomer or tautomeric form thereof including mix- tures of these or a pharmaceutical acceptable salt thereof.

In another embodiment, the invention relates to a compound of the general formula (15) : wherein R6, R7, E and D are as defined for formula (I) or in any one of the above embodi- ments, as well as any diastereomer or enantiomer or tautomeric form thereof including mix- tures of these or a pharmaceutically acceptable salt thereof.

In another embodiment, the invention relates to a compound of the general formula (15a) : wherein Ra, R7, E and D are as defined for formula (I), as well as any diastereomer or enanti- omer or tautomeric form thereof including mixtures of these or a pharmaceutical acceptable salt thereof.

In another embodiment, the invention relates to a compound of the general formula (15b) :

wherein R6, R7, E and D are as defined for formula (I), as well as any diastereomer or enanti- omer or tautomeric form thereof including mixtures of these or a pharmaceutically acceptable salt thereof.

In another embodiment, the invention relates to a compound of the general formula (16) : wherein R6, R7, E and D are as defined for formula (I) or in any one of the above embodi- ments, as well as any diastereomer or enantiomer or tautomeric form thereof including mix- tures of these or a pharmaceutical acceptable salt thereof.

The compounds of the present invention may be chiral, and it is intended that any enantiomers, as separated, pure or partially purified enantiomers or racemic mixtures thereof are included within the scope of the invention.

Furthermore, when a double bond or a fully or partially saturated ring system or more than one center of asymmetry or a bond with restricted rotability is present in the mole- cule diastereomers may be formed. It is intended that any diastereomers, as separated, pure or partially purified diastereomers or mixtures thereof are included within the scope of the invention.

Furthermore, some of the compounds of the present invention may exist in different tautomeric forms and it is intended that any tautomeric forms, which the compounds are able to form, are included within the scope of the present invention.

The present invention also encompasses pharmaceutical acceptable salts of the present compounds. Such salts include pharmaceutical acceptable acid addition salts, pharmaceutically acceptable metal salts, ammonium and alkylated ammonium salts. Acid addition salts include salts of inorganic acids as well as organic acids. Representative examples of suitable inorganic acids include hydrochloric, hydrobromic, hydroiodic, phosphoric, sulfuric, nitric acids and the like. Representative examples of suitable organic acids include formic, acetic, trichloroacetic, trifluoroacetic, propionic, benzoic, cinnamic, citric, fumaric, glycolic, lactic, maleic, malic, malonic, mandelic, oxalic, picric, pyruvic, salicylic,

succinic, methanesulfonic, ethanesulfonic, tartaric, ascorbic, pamoic, bismethylene salicylic, ethanedisulfonic, gluconic, citraconic, aspartic, stearic, palmitic, EDTA, glycolic, p-amino- benzoic, glutamic, benzenesulfonic, p-toluenesulfonic acids and the like. Further examples of pharmaceutically acceptable inorganic or organic acid addition salts include the pharma- ceutically acceptable salts listed in J. Pharm. Sci. 1977,66, 2, which is incorporated herein by reference. Examples of metal salts include lithium, sodium, potassium, magnesium salts and the like. Examples of ammonium and alkylated ammonium salts include ammonium, methyl-, dimethyl-, trimethyl-, ethyl-, hydroxyethyl-, diethyl-, n-butyl-, sec-butyl-, tert-butyl-, tetramethylammonium salts and the like.

Also intended as pharmaceutical acceptable acid addition salts are the hydrates, which the present compounds, are able to form.

Furthermore, the pharmaceutical acceptable salts comprise basic amino acid salts such as lysine, arginine and ornithine.

The acid addition salts may be obtained as the direct products of compound synthe- sis. In the alternative, the free base may be dissolved in a suitable solvent containing the ap- propriate acid, and the salt isolated by evaporating the solvent or otherwise separating the salt and solvent.

The compounds of the present invention may form solvates with standard low mo- lecular weight solvents using methods well known to the person skilled in the art. Such sol- vates are also contemplated as being within the scope of the present invention.

The invention also encompasses prodrugs of the present compounds, which on ad- ministration undergo chemical conversion by metabolic processes before becoming pharma- cologically active substances. In general, such prodrugs will be functional derivatives of the compounds of the general formula (I), which are readily convertible in vivo into the required compound of the formula (I). Conventional procedures for the selection and preparation of suitable prodrug derivatives are described, for example, in"Design of Prodrugs", ed. H.

Bundgaard, Elsevier, 1985.

The invention also encompasses active metabolites of the present compounds.

The compounds according to the present invention act to antagonize the action of glucagon and are accordingly useful for the treatment of disorders and diseases in which such an antagonism is beneficial.

The compounds according to the present invention preferably have an ICS0 value of no greater than 5 p. M, more preferably of less than 1 uM, even more preferred of less than 500 nM, such as of less than 100 nM as determined by the Glucagon Binding Assay (I) or Glucagon Binding Assay (II) disclosed herein.

Accordingly, the present compounds may be applicable for the treatment of hypergly- cemia, IGT (impaired glucose tolerance), insulin resistance syndromes, syndrome X, type 1 diabetes, type 2 diabetes, hyperlipidemia, dyslipidemia, hypertriglyceridemia, hyperlipo- proteinemia, hypercholesterolemia, arteriosclerosis including atherosclerosis, glucagonomas, acute pancreatitis, cardiovascular diseases, hypertension, cardiac hypertrophy, gastrointestinal disorders, obesity, diabetes as a consequence of obesity, diabetic dyslipidemia, etc.

Furthermore, they may be applicable as diagnostic agents for identifying patients hav- ing a defect in the glucagon receptor, as a therapy to increase gastric acid secretions and to reverse intestinal hypomobility due to glucagon administration.

They may also be useful as tool or reference molecules in labelled form eg radio- labelled in binding assays to identify new glucagon antagonists.

Accordingly, in a further aspect the invention relates to a compound according to the invention for use as a medicament.

The invention also relates to pharmaceutical compositions comprising, as an active ingredient, at least one compound according to the invention together with one or more pharmaceutically acceptable carriers or excipients.

The pharmaceutical composition is preferably in unit dosage form comprising from about 0.05 mg to about 1000 mg, preferably from about 0.1 mg to about 500 mg and espe- cially preferred from about 0.5 mg to about 200 mg of the compound according to the inven- tion.

Furthermore, the invention relates to the use of a compound according to the invention for the preparation of a pharmaceutical composition for the treatment of a disorder or disease, wherein a glucagon antagonistic action is beneficial.

The invention also relates to a method for the treatment of disorders or diseases, wherein a glucagon antagonistic action is beneficial the method comprising administering to a subject in need thereof an effective amount of a compound according to the invention.

In one embodiment, the present compounds are used for the preparation of a me- dicament for the treatment of any glucagon-mediated conditions and diseases.

In another embodiment, the present compounds are used for the preparation of a medicament for the treatment of hyperglycemia.

In yet another embodiment, the present compounds are used for the preparation of a medicament for lowering blood glucose in a mammal. The present compounds are effec- tive in lowering the blood glucose, both in the fasting and the postprandial stage.

In yet another embodiment, the present compounds are used for the preparation of a pharmaceutical composition for the treatment of IGT.

In still another embodiment, the present compounds are used for the preparation of a pharmaceutical composition for the treatment of type 2 diabetes.

In yet another embodiment, the present compounds are used for the preparation of a pharmaceutical composition for the delaying or prevention of the progression from IGT to type 2 diabetes.

In yet another embodiment, the present compounds are used for the preparation of a pharmaceutical composition for the delaying or prevention of the progression from non- insulin requiring type 2 diabetes to insulin requiring type 2 diabetes.

In a further embodiment, the present compounds are used for the preparation of a pharmaceutical composition for the treatment of type 1 diabetes. Such treatment is normally accompanied by insulin therapy.

In still a further embodiment, the present compounds are used for the preparation of a pharmaceutical composition for the treatment of obesity.

In yet a further embodiment, the present compounds are used for the preparation of a pharmaceutical composition for the treatment of disorders of the lipid metabolism, such as dyslipidemia.

In still a further embodiment, the present compounds are used for the preparation of a pharmaceutical composition for the treatment of an appetite regulation or energy expendi- ture disorder.

In a further aspect of the invention, treatment of a patient with the present com- pounds is combined with diet and/or exercise.

In yet a further aspect of the invention, the present compounds are administered in combination with one or more further active substances in any suitable ratio (s). Such further active agents may be selected from antidiabetic agents, antihyperlipidemic agents, antiobe- sity agents, antihypertensive agents and agents for the treatment of complications resulting from or associated with diabetes.

Suitable antidiabetic agents include insulin, insulin analogues and derivatives such as those disclosed in EP 792 290 (Novo Nordisk A/S), eg NE329-tetradecanoyl des (B30) human insulin, EP 214 826 and EP 705 275 (Novo Nordisk A/S), eg AspB28 human insulin, US 5, 504, 188 (Eli Lilly), eg Lys"28 Pro829 human insulin, EP 368 187 (ventis), eg Lantus, all of which are incorporated herein by reference, GLP-1 and GLP-1 derivatives such as those disclosed in WO 98/08871 (Novo Nordisk A/S), which is incorporated herein by reference, as well as orally active hypoglycemic agents.

The orally active hypoglycemic agents include imidazolines, sulphonylureas, biguanides, meglitinides, oxadiazolidinediones, thiazolidinediones, a-glucosidase inhibitors,

glucagon antagonists, GLP-1 agonists, agents acting on the ATP-dependent potassium channel of the ß-cells, eg potassium channel openers such as those disclosed in WO 97/26265, WO 99/03861 and WO 00/37474 (Novo Nordisk A/S), all of which are incorporated herein by reference, or nateglinide or potassium channel blockers such as BTS-67582, insulin sensitizers, insulin secretagogues, DPP-IV (dipeptidyl peptidase-IV) inhibitors, PTPase inhibitors, inhibitors of hepatic enzymes involved in stimulation of gluconeogenesis and/or glycogenolysis, glucose uptake modulators, activators of glucokinase (GK) such as those disclosed in WO 00/58293, WO 01/44216, WO 01/83465, WO 01/83478, WO 01/85706, WO 01/85707 and WO 02/08209 (Hoffman-La Roche), which are incorporated herein by reference, GSK-3 (glycogen synthase kinase-3) inhibitors, compounds modifying the lipid metabolism such as antihyperlipidemic agents and antilipidemic agents, compounds lowering food intake, PPAR (peroxisome proliferator-activated receptor) and RXR (retinoid X receptor) agonists such as ALRT-268, LG-1268 or LG-1069.

In one embodiment, the present compounds are administered in combination with insulin or an insulin analogue or derivative, such as NXB29-tetradecanoyl des (B30) human insulin, AspB28 human insulin, ysB28 Pro829 human insulin, LysB29- (N' (Y-glutamyl-Nalitocholyl) des (B30) human insulin, Lantus, or a mix-preparation comprising one or more of these.

In a further embodiment, the present compounds are administered in combination with a sulphonylurea, eg tolbutamide, chlorpropamide, tolazamide, glibenclamide, glyburide, glipizide, glimepride or glicazide.

In another embodiment, the present compounds are administered in combination with a biguanide, eg metformin.

In yet another embodiment, the present compounds are administered in combination with a meglitinide, eg repaglinide or nateglinide.

In still another embodiment, the present compounds are administered in combina- tion with a thiazolidinedione insulin sensitizer, eg troglitazone, ciglitazone, pioglitazone, rosiglitazone, isaglitazone, darglitazone, englitazone, CS-01 1/CI-1037 or T174 or the com- pounds disclosed in WO 97/41097, WO 97/41119, WO 97/41120, WO 00/41121 and WO 98/45292 (Dr. Reddy's Research Foundation).

In still another embodiment, the present compounds may be administered in combi- nation with an insulin sensitizer such as GI 262570, YM-440, MCC-555, JTT-501, AR-H039242, KRP-297, GW-409544, CRE-16336, AR-H049020, LY510929, LY465608, MBX-102, CLX-0940, GW-501516, tesaglitazar (AZ 242) or the compounds disclosed in WO 99/19313, WO 00/50414, WO 00/63191, WO 00/63192, WO 00/63193 such as ragaglitazar (NN 622 or (-) DRF 2725) (Dr. Reddy's Research Foundation) and WO 00/23425, WO

00/23415, WO 00/23451, WO 00/23445, WO 00/23417, WO 00/23416, WO 00/63153, WO 00/63196, WO 00/63209, WO 00/63190 and WO 00/63189 (Novo Nordisk A/S).

In a further embodiment, the present compounds are administered in combination with an a-glucosidase inhibitor, eg voglibose, emiglitate, miglitol or acarbose.

In another embodiment, the present compounds are administered in combination with an agent acting on the ATP-dependent potassium channel of the p-ce) is, eg tolbutamide, chlorpropamide, tolazamide, glibenclamide, glyburide, glipizide, glicazide, BTS-67582, repaglinide or nateglinide.

In still another embodiment, the present compounds are administered in combina- tion with an antihyperlipidemic agent or antilipidemic agent, eg cholestyramine, colestipol, clofibrate, gemfibrozil, lovastatin, pravastatin, simvastatin, probucol or dextrothyroxine.

In another aspect of the invention, the present compounds are administered in com- bination with more than one of the above-mentioned compounds, eg in combination with metformin and a sulphonylurea such as glibenclamide or glyburide ; a sulphonylurea and acarbose; metformin and a meglitinide such as repaglinide ; acarbose and metformin ; a sul- fonylurea, mefformin and troglitazone ; a sulfonylurea, metformin and pioglitazone ; a sulfon- lurea, metformin and an insulin sensitizer such as disclosed in WO 00/63189 or WO 97/41097 ; a meglitinide such as repaglinide, mefformin and troglitazone ; a meglitinide such as repaglinide, metformin and pioglitazone ; a meglitinide such as repaglinide, metformin and an insulin sensitizer such as disclosed in WO 00/63189 or WO 97/41097; insulin and a sul- fonylurea ; insulin and a meglitinide such as repaglinide ; insulin and metformin ; insulin, met- formin and a meglitinide such as repaglinide ; insulin, mefformin and a sulfonylurea ; insulin and troglitazone ; insulin and pioglitazone ; insulin and an insulin sensitizer such as such as disclosed in WO 00/63189 or WO 97/41097 ; insulin and lovastatin ; an insulin analogue or derivative, mefformin and a meglitinide such as repaglinide ; an insulin analogue or derivative, mefformin and a sulfonylurea ; an insulin analogue or derivative and troglitazone ; an insulin analogue or derivative and pioglitazone ; an insulin analogue or derivative and an insulin sen- sitizer such as disclosed in WO 00/63189 or WO 97/41097 ; an insulin analogue or derivative and lovastatin ; etc.

Furthermore, the compounds according to the invention may be administered in combination with one or more antiobesity agents or appetite regulating agents.

Such agents may be selected from the group consisting of CART (cocaine am- phetamine regulated transcript) agonists, NPY (neuropeptide Y) antagonists, MC4 (melano- cortin 4) agonists, orexin antagonists, H3 histamine antagonists, TNF (tumor necrosis factor) modulators, CRF (corticotropin releasing factor) agonists, CRF BP (corticotropin releasing

factor binding protein) antagonists, urocortin agonists, ß3 adrenergic agonists such as CL-316243, AJ-9677, GW-0604, LY362884, LY377267 or AZ-40140, MSH (melanocyte- stimulating hormone) agonists, MCH (melanocyte-concentrating hormone) antagonists, CCK (cholecystokinin) agonists, serotonin re-uptake inhibitors such as fluoxetine, seroxat or cita- lopram, serotonin and noradrenaline re-uptake inhibitors, 5HT (serotonin) agonists, bombe- sin agonists, galanin antagonists, growth hormone, growth hormone releasing compounds, TRH (thyreotropin releasing hormone) agonists, UCP 2 or 3 (uncoupling protein 2 or 3) modulators, leptin agonists, DA (dopamine) agonists (bromocriptin, doprexin), lipase/amylase inhibitors, PPAR modulators, RXR modulators orTR (3 agonists.

In another embodiment, the antiobesity agent is dexamphetamine or amphetamine.

In another embodiment, the antiobesity agent is fenfluramine or dexfenfluramine.

In still another embodiment, the antiobesity agent is sibutramine.

In a further embodiment, the antiobesity agent is orlistat.

In another embodiment, the antiobesity agent is mazindol or phentermine.

Furthermore, the present compounds may be administered in combination with one or more antihypertensive agents. Examples of antihypertensive agents are p-b) ockers such as alprenolol, atenolol, timolol, pindolol, propranolol and metoprolol, ACE (angiotensin con- verting enzyme) inhibitors such as benazepril, captopril, enalapril, fosinopril, lisinopril, quinapril and ramipril, calcium channel blockers such as nifedipine, felodipine, nicardipine, isradipine, nimodipine, diltiazem and verapamil, and a-blockers such as doxazosin, urapidil, prazosin and terazosin. Further reference can be made to Remington: The Science and Practice of Pharmacy, 19th Edition, Gennaro, Ed. , Mack Publishing Co. , Easton, PA, 1995.

It should be understood that any suitable combination of the compounds according to the invention with diet and/or exercise, one or more of the above-mentioned compounds and optionally one or more other active substances are considered to be within the scope of the present invention.

PHARMACEUTICAL COMPOSITIONS The compounds of the invention may be administered alone or in combination with pharmaceutical acceptable carriers or excipients, in either single or multiple doses. The phar- maceutical compositions according to the invention may be formulated with pharmaceutically acceptable carriers or diluents as well as any other known adjuvants and excipients in accor- dance with conventional techniques such as those disclosed in Remington: The Science and Practice of Pharmacy, 19 Edition, Gennaro, Ed. , Mack Publishing Co. , Easton, PA, 1995.

The pharmaceutical compositions may be specifically formulated for administration by any suitable route such as the oral, rectal, nasal, puimonary, topical (including buccal and sublingual), transdermal, intracisternal, intraperitoneal, vaginal and parenteral (including sub- cutaneous, intramuscular, intrathecal, intravenous and intradermal) route, the oral route be- ing preferred. It will be appreciated that the preferred route will depend on the general condi- tion and age of the subject to be treated, the nature of the condition to be treated and the ac- tive ingredient chosen.

Pharmaceutical compositions for oral administration include solid dosage forms such as capsules, tablets, dragees, pills, lozenges, powders and granules. Where appropri- ate, they can be prepared with coatings such as enteric coatings or they can be formulated so as to provide controlled release of the active ingredient such as sustained or prolonged release according to methods well known in the art.

Liquid dosage forms for oral administration include solutions, emulsions, suspen- sions, syrups and elixirs.

Pharmaceutical compositions for parenteral administration include sterile aqueous and non-aqueous injectable solutions, dispersions, suspensions or emulsions as well as ster- ile powders to be reconstituted in sterile injectable solutions or dispersions prior to use. De- pot injectable formulations are also contemplated as being within the scope of the present invention.

Other suitable administration forms include suppositories, sprays, ointments, cremes, gels, inhalants, dermal patches, implants etc.

A typical oral dosage is in the range of from about 0.001 to about 100 mg/kg body weight per day, preferably from about 0.01 to about 50 mg/kg body weight per day, and more preferred from about 0.05 to about 10 mglkg body weight per day administered in one or more dosages such as 1 to 3 dosages. The exact dosage will depend upon the frequency and mode of administration, the sex, age, weight and general condition of the subject treated, the nature and severity of the condition treated and any concomitant diseases to be treated and other factors evident to those skilled in the art.

The formulations may conveniently be presented in unit dosage form by methods known to those skilled in the art. A typical unit dosage form for oral administration one or more times per day such as 1 to 3 times per day may contain from 0.05 to about 1000 mg, preferably from about 0.1 to about 500 mg, and more preferred from about 0.5 mg to about 200 mg.

For parenteral routes such as intravenous, intrathecal, intramuscular and similar ad- ministration, typically doses are in the order of about half the dose employed for oral administra- tion.

The compounds of this invention are generally utilized as the free substance or as a pharmaceutically acceptable salt thereof, One example is a base addition salt of a compound having the utility of a free acid. When a compound of the formula (I) contains a free acid such salts are prepared in a conventional manner by treating a solution or suspension of a free acid of the formula (I) with a chemical equivalent of a pharmaceutical acceptable base. Represen- tative examples are mentioned above.

For parenteral administration, solutions of the novel compounds of the formula (I) in sterile aqueous solution, aqueous propylene glycol, aqueous vitamin E or sesame or peanut oil may be employed. Such aqueous solutions should be suitably buffered if necessary and the liq- uid diluent first rendered isotonic with sufficient saline or glucose. The aqueous solutions are particularly suitable for intravenous, intramuscular, subcutaneous and intraperitoneal admini- stration. The sterile aqueous media employed are all readily available by standard techniques known to those skilled in the art.

Suitable pharmaceutical carriers include inert solid diluents or fillers, sterile aqueous solution and various organic solvents. Examples of solid carriers are lactose, terra alba, su- crose, cyclodextrin, talc, gelatine, agar, pectin, acacia, magnesium stearate, stearic acid and lower alkyl ethers of cellulose. Examples of liquid carriers are syrup, peanut oil, olive oil, phospholipids, fatty acids, fatty acid amines, polyoxyethylene and water. Similarly, the carrier or diluent may include any sustained release material known in the art, such as glyceryl monostearate or glyceryl distearate, alone or mixed with a wax. The pharmaceutical composi- tions formed by combining the novel compounds of the formula (I) and the pharmaceutically ac- ceptable carriers are then readily administered in a variety of dosage forms suitable for the dis- closed routes of administration. The formulations may conveniently be presented in unit dosage form by methods known in the art of pharmacy.

Formulations of the present invention suitable for oral administration may be presented as discrete units such as capsules or tablets, each containing a predetermined amount of the active ingredient, and which may include a suitable excipient. Furthermore, the orally available formulations may be in the form of a powder or granules, a solution or suspension in an aque- ous or non-aqueous liquid, or an oil-in-water or water-in-oil liquid emulsion.

If a solid carrier is used for oral administration, the preparation may be tablette, placed in a hard gelatine capsule in powder or pellet form or it can be in the form of a troche or lozenge. The amount of solid carrier will vary widely but will usually be from about 25 mg

to about 1 g. If a liquid carrier is used, the preparation may be in the form of a syrup, emul- sion, soft gelatine capsule or sterile injectable liquid such as an aqueous or non-aqueous liq- uid suspension or solution.

A typical tablet that may be prepared by conventional tabletting techniques may con- tain: Core: Active compound (as free compound or salt thereof) 5.0 mg Lactosum Ph. Eur. 67.8 mg Cellulose, microcryst. (Avicel) 31.4 mg Amberlite IRP88* 1.0 mg Magnesii stearas Ph. Eur. q. s.

Coating: Hydroxypropyl methylcellulose approx. 9 mg Mywacett 9-40 T** approx. 0.9 mg * Polacrillin potassium NF, tablet disintegrant, Rohm and Haas.

** Acylated monoglyceride used as plasticizer for film coating.

If desired, the pharmaceutical composition of the invention may comprise the com- pound of the formula (I) in combination with further pharmacologically active substances such as those described in the foregoing.

EXAMPLES The following examples and general procedures refer to intermediate compounds and final products identified in the specification and in the synthesis schemes. The prepara- tion of the compounds of the present invention is described in detail using the following ex- amples, but the chemical reactions described are disclosed in terms of their general applica- bility to the preparation of the glucagon antagonists of the invention. In general the com- pounds of the invention can be prepared by different methods of which only one representa- tive example was disclosed below. As illustrative examples of this, some compounds were prepared by several methods. Occasionally, the reaction may not be applicable as described to each compound included within the disclosed scope of the invention. The compounds for which this occurs will be readily recognised by those skilled in the art. In these cases the re- actions can be successfully performed by conventional modifications known to those skilled

in the art, that is, by appropriate protection of interfering groups, by changing to other con- ventional reagents, or by routine modification of reaction conditions. Alternatively, other reac- tions disclosed herein or otherwise conventional will be applicable to the preparation of the corresponding compounds of the invention. In all preparative methods, all starting materials are known or may easily be prepared from known starting materials. All temperatures are set forth in degrees Celsius and unless otherwise indicated, all parts and percentages are by weight when referring to yields and all parts are by volume when referring to solvents and eluent.

Some of the NMR data shown in the following examples are only selected data.

In the examples the following terms are intended to have the following, general meanings: DBU: 1, 8-diazabicyclo [5.4. 0] undec-5-ene DCM: dichloromethane, methylenechloride DIPEA : N, N-diisopropylethylamine DMF : N, N-dimethyl formamide DMSO: dimethyl sulfoxide, methyl sulfoxide EDAC: 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride Fmoc: 9-fluorenylmethyloxycarbonyl NMP : N-methyl-2-pyrrolidinone TFA: trifluoroacetic acid THF: tetrahydrofuran HOBt : 1-hydroxybenzotriazole HPLC-MS (Method A) The following instrumentation is used: Hewlett Packard series 1100 G1312A Bin Pump Hewlett Packard series 1100 Column compartment Hewlett Packard series 1100 G13 15A DAD diode array detector Hewlett Packard series 1100 MSD The instrument is controlled by HP Chemstation software.

The HPLC pump is connected to two eluent reservoirs containing: A: 0. 01 % TFA in water B: 0. 01 % TFA in acetonitrile The analysis is performed at 40 °C by injecting an appropriate volume of the sample (preferably 1 mL) onto the column. which is eluted with a gradient of acetonitrile.

The HPLC conditions, detector settings and mass spectrometer settings used are given in the following table. Column Waters Xterra 100A MS C-18 3. 5 um, 3.0 mm x 50 mm Gradient 10%-100% acetonitrile lineary during 7.5 min at 1.0 mUmin Detection MS lonisation mode: API-ES Scan 100-1000 amu step 0.1 amu

HPLC-MS (Method B) The following instrumentation is used: Hewlett Packard series 1100 MSD G1946A Single quadropole mass spectrometer Hewlett Packard series 1100 MSD G1312A Bin pump Hewlett Packard series 1100 MSD G1313A ALS autosampler Hewlett Packard series 1100 MSD G1315A diode array detector (DAD) The HP LC/MSD ChemStation control software running on a HP Vectra computer is used for the instrument control and data acquisition.

The HPLC pump is connected to two eluent reservoirs containing: A: 0.01 % TFA in water B: 0.01 % TFA in acetonitrile The analysis is performed at room temperature by injecting 1 mL of the sample solu- tion on the column which is eluted with a gradient of acetonitrile in 0. 01 % TFA.

The HPLC conditions, detector settings and mass spectrometer settings used are given in the following table. Column Waters Xterra 100A MS C-18 3.5 pm, 3.0 mm x 50 mm Gradient 10%-100% acetonitrile in 0.05% TFA linearly during 4.5 min at 1.5 mL/min Detection UV: 210 nm (diode array) MS lonisation mode: API-ES Experiment: Start: 100 amu Stop: 1000 amu Step: 0. 1 amu

HPLC-MS (Method C) The following instrumentation is used: Sciex API 100 Single quadropole mass spectrometer Perkin Elmer Series 200 Quard pump 'Perkin E ! mer Series 200 autosampler Applied Biosystems 785A UV detector cedex 55 evaporative light scattering detector A Valco column switch with a Valco actuator controlled by timed events from the pump.

The Sciex Sample control software running on a Macintosh PowerPC 7200 com- puter is used for the instrument control and data acquisition.

The HPLC pump is connected to four eluent reservoirs containing: A: Acetonitrile B: Water C: 0.5% TFA in water D: 0.02 M ammonium acetate The requirements for the samples are that they contain approximately 500 llg/mL of the compound to be analysed in an acceptable solvent such as methanol, ethanol, acetoni- trile, THF, water and mixtures thereof. (High concentrations of strongly eluting solvents will interfere with the chromatography at low acetonitrile concentrations. ) The analysis is performed at room temperature by injecting 20 Rl of the sample solu- tion on the column, which is eluted with a gradient of acetonitrile in either 0.05% TFA or 0.002 M ammonium acetate. Depending on the analysis method varying elution conditions are used.

The eluate from the column is passed through a flow splitting T-connector, which passed approximately 20 gl/min through approx. 1 m 75 11 fused silica capillary to the API interface of API 100 spectrometer.

The remaining 1.48 mUmin is passed through the UV detector and to the ELS de- tector.

During the LC-analysis the detection data are acquired concurrently from the mass spectrometer, the UV detector and the ELS detector.

The LC conditions, detector settings and mass spectrometer settings used for the different methods are given in the following table. Column YMC ODS-A 120A s-51u 3 mm x 50 mm id Gradient 5%-90% acetonitrile in 0.05% TFA linearly during 7.5 min at 1.5 mL/min Detection UV: 214 nm ELS : 40 °C MS Experiment: Start: 100 amu Stop: 800 amu Step: 0. 2 amu Dwell : 0.571 msec Method: Scan 284 times = 9.5 min

HPLC-MS (Method D) The following instrumentation is used: Hewlett Packard series 1100 G1312A Bin Pump Hewlett Packard series 1100 Column compartment Hewlett Packard series 1100 G1315A DAD diode array detector Hewlett Packard series 1100 MSD Sedere 75 Evaporative Light Scattering detector The instrument is controlled by HP Chemstation software.

The HPLC pump is connected to two eluent reservoirs containing: A : 0. 01 % TFA in water B : 0. 01 % TFA in acetonitrile The analysis is performed at 40 °C by injecting an appropriate volume of the sample (preferably 1 NI) onto the column which is eluted with a gradient of acetonitrile.

The HPLC conditions, detector settings and mass spectrometer settings used are given in the following table.

Column Waters Xterra MS C-18 X 3 mm id 5 um Gradient 5%-100% acetonitrile linear during 7.5 min at 1.5 mL/min Detection 210 nm (analogue output from DAD) ELS (analoaue output from ELS) MS ionisation mode API-ES Scan 100-1000 amu step 0.1 amu After the DAD the flow is divided yielding approximately 1 mL/min to the ELS and 0.5 mUmin to the MS.

Building blocks The following section refers to building blocks used to prepare intermediates of for- mual (II) :

formula (II) wherein E and D are as defined above.

Starting material for building block used to prepare intermediates of formula (II) 4-Cyclohexylbenzaidehyde This compound was synthesized according to a modified literature procedure (J. Org. Chem., 37, No. 24, (1972), 3972-3973).

Cyclohexylbenzene (112.5 g, 0.702 mol) and hexamethylenetetramine (99.3 g, 0.708 mol) were mixed in TFA (375 mL). The mixture was stirred under nitrogen at 90 °C for 3 days. Af- ter cooling to room temperature the mixture was poured into ice-water (3600 mL) and stirred for 1 hour. The solution was neutralized with Na2CO3 (2 M solution in water) and extracted with DCM (2.5 I). The organic phase was dried (Na2SO4) and the solvent was removed in vacuo. The remaining oil was purified by fractional distillation to yield the title compound (51 g, 39%).

'H NMR (CDCI3) : #9. 96 (s, 1H), 7.80 (d, 2H), 7.35 (d, 2H), 2.58 (m, 1H), 1.94-1. 70 (m, 5 H), 1.51-1. 17 (m, 5H) Starting material for building block used to prepare intermediates of formula (II) 4-(2, 2-Dimethylpropyl) benzaldehyde

This compound was synthesized in analogy with a modified literature procedure (J. Med.

Chem., 36,23, (1993), 3700-3704).

(2, 2-Dimethylpropyl) benzene (9,33 g, 63 mmol) was dissolved in dichloromethane (50 mL) and cooled to 0 °C on an ice bath. With vigorous stirring, SnCI4 (28.66 g, 110 mmol) was added all at once via syringe, followed by dropwise addition of dichloromethyl methyl ether (7.24 g, 63 mmol) over 10 min. After 20 min, the ice bath was removed, and the mixture was quenched by the addition of ice-water (100 mL). The aqueous layer was discarded and the organic phase was washed with water (3 x 25 mL), 3 N hydrochloric acid (3 x 25 mL), and aqueous saturated sodium chloride (2 x 25 mL). The organic phase was then treated with activated carbon, dried (magnesium sulphate), filtered and concentrated in vacuo. This af- forded the title compound. Yield 7.49 g (62%).

'H NMR (CDCI3) : 60. 94 (s, 9H), 2.57 (s, 2H), 7.28 (d, 2H), 7.80 (d, 2H), 9.98 (s, 1 H).

Starting material for building block used to prepare intermediates of formula (II) Indan-5-carbaldehyde The title compound was prepared from indane and dichloromethyl methyl ether, using the same procedure as described above, providing a 1: 2 mixture of indane-4-carbaldehyde and indane-5-carbaldehyde. The mixture was used for subsequent conversion to the chacone (building block 7) without any futher purification. Data only given for the title compound, (the major isomer) 'H NMR (DMSO-d6) : c52. 05 (q, 2H), 2.90 (m, 4H), 7.41 (d, 1H), 7.67 (d, 1H), 7.70 (s, 1 H).

9.95 (s, 1H). HPLC-MS (Method D): m/z = 147 (M+1) ; R, = 3.53 min.. Starting material for building block used to prepare intermediates of formula (II) 4-Cyclohex-1-enyl-benzaldehyde

Magnesium turnings (14.6 g, 600mmol) was placed in a dry 4-necked flask. Dry THF (50 mL) and a crystal of iodine were added. A mixture of 2- (4-bromophenyl)- [1, 3]-dioxolane (Tetrahe- dron, 57, No. 28, (2001), 5991-6002) (135 g, 589 mmol) in dry THF (200 mL) was slowly added to initiate the reaction. After the reaction had started, the addition of 2- (4- bromophenyl)- [1, 3]-dioxolane was continued at such a rate that the temperature was main- tained between 35 and 40 °C. After the addition was complete the mixture was stirred for 2 hours and then cooled to 5 °C on an ice bath. Cyclohexanone (57.8 g, 580 mmmol) was added dropwise while maintaining the temperature below 10 °C. The mixture was stirred for 18 hours at room temperature and two third of the THF was removed in vacuo. The residue was poured into a mixture of ammonium chloride (65 g) in ice water (1 liter) and extracted with ethyl acetate. The organic phase was washed with water, dried (magnesium sulphate), filtered and evaporated in vacuo. The residual oil was slurred in petroleum ether to afford 48 g of 1- (4- [1, 3] dioxolan-2yl-phenyl) cyclohexanol as a solid.

HPLC-MS (Method A): m/z = 231 (M+1); Rt = 3.27 min.

1- (4- [1, 3] Dioxolan-2-yl-phenyl) cyclohexanol (45 g) and p-toluenesulfonic acid (3.4 g) in 300 mL of toluene were refluxed for 3 hours under Dean-Stark conditions. After cooling, ethyl acetate and a saturated sodium hydrogen carbonate solution were added. The organic layer was washed twice with water, dried (magnesium sulphate), filtered and concentrated in vacuo. The residual oil was dissolved in glacial acetic acid (250 mL) and 1 M hydrochloric acid (25 mL) was added and the mixture was stirred at 50 °C for 2 hours. After cooling, the mixture was concentrated in vacuo. The residual oil was partitioned between ethyl acetate and water. The organic phase was washed three times with water, dried (magnesium sul- phate), filtered and concentrated in vacuo. The residual oil was distilled in vacuo and the fraction boiling at 120-130 °C (0.2 mmHg) was collected to afford 4.7 g of the title com- pound.

'H NMR (CDCI3) : a 1. 72 (m, 4H), 2.25 (m, 2H), 2.43 (m, 2H), 6.30 (m, 1 H), 7.53 (d, 2H), 7.82 (d, 2H), 9.98 (s, 1 H). Starting material for building block used to prepare intermediates of formula (II) 1- (3, 5-Dichlorophenyl) ethanone

3, 5-Dichlorobenzoic acid (19,10 g, 100 mmol) was dissolved in dry THF (165 mL) and cooled to 0 °C in an ice bath. With vigorous stirring, 138 mL (210 mmol) of methyl lithium (1.6 M in diethyl ether) was added dropwise over a period of 30 min via syringe. After 1 hour the mix- ture was poured into ice-water (500 mL). The aqueous phase was extracted with diethyl ether (4 x 50 mL). The combined organic phases were washed with saturated aqueous so- dium hydrogen carbonate (2 x 50 mL) and saturated aqueous sodium chloride (2 x 50 mL).

The organic phase was dried (magnesium sulphate), filtered and the solvent was removed in vacuo. This afforded 17.06 g of the title compound containing 18% by weight of 2- (3, 5-di- chlorophenyl) propan-2-ol. This compound was used in the next step without further purifica- tion.

'H NMR (CDCI3) : 32. 62 (s, 3H), 7.92 (s, 2H), 7.94 (s, 1H).

Starting material for building block used to prepare intermediates of formula (II) 1- (2, 2, 3, 3-Tetrafluoro-2, 3-dihydrobenzo [1, 4] dioxin-6-yl) ethanone All equipment was dried at 120 °C for some hours in an oven.

Under an atmosphere of nitrogen in a dried three-necked 500 mL round bottom flask equipped with a separatory funnel and a condenser was added magnesium chips (7.31 g, 0.30 mol) and diethyl ether (20 mL). With magnetic stirring, iodomethane (4.7 mL, 75 mmol) was added dropwise to the Mg and the reaction was commenced. lodomethane (14 mL, 0.22 mol) in diethyl ether (30 mL) was added slowly while maintaining reflux. After finished addi- tion the mixture was stirred for 1% hour. 6-Cyano-2,2, 3, 3-tetrafluoro-1. 4-benzodioxene (35 g, 0.15 mol) was dissolved in toluene (60 mL) and added to the reaction mixture. The mixture was heated to 80 °C for 1 hour without condenser to remove the diethyl ether. Additional 6- cyano-2,2, 3, 3-tetrafluoro-1. 4-benzodioxene (25 g, 0.11 mol) was added and the mixture was heated at reflux temperature for 16 hours. The mixture was cooled with an ice bath and hy- drochloric acid (6 M, 150 mL) was added carefully and the mixture was then heated to reflux

for 1.5 hour. After cooling, the mixture was partitioned between ethyl acetate and water, and washed with aqueous sodium hydrogen carbonate. The combined organic phases were dried (magnesium sulphate) and concentrated in vacuo. The residual oil was purified by chroma- tography on silica gel eluting with a mixture of ethyl acetate and heptane (2: 8). This afforded the title compound (22 g, 34 %).

'H NMR (CDCI3) : 57. 80 (dd, 1H), 7.77 (d, 1H), 7.23 (d, 1H), 2.69 (s, 3H); HPLC-MS (Method A): m/z = 251 (M+1); Rt = 4.27 min.

General procedure (A) General procedure (A) for solution phase synthesis of building block compounds of the gen- eral formula (11) : This procedure is illustrated under building block 1.

Building block 1 (General procedure (A)) 3- (4-Cyclohexylphenyl)-1- (4-trifluoromethylsulfanylphenyl) propenone 4- (Trifluoromethylsulfanyl) acetophenone (2.34 g, 10.6 mmol) and 4-cyclohexylbenzaldehyde (2 g, 10.6 mmol) were mixed in ethanol (3 mL). NaOH (0.425 g, 14 : 6 mmol) was dissolved in water (2 mL) and added to the mixture. The mixture was stirred at room temperature and af- ter 10 min a precipitate was observed and additional ethanol (5 mL) was added while main- taining stirring for another 30 min. The mixture was poured into water (100 mL). The precipi- tate was filtered and dried. This crude product was pure enough for subsequent use without further purification (2.64 g, 64%). Alternatively, it can be recrystallized from heptane to give the pure product.

HPLC-MS (Method A): m/z = 391 (M+1); R, = 6.68 min.

Building block 2 (General procedure (A)) 3- (4-Cyclohex-1-enylphenyl)-1- (4-trifluoromethoxyphenyl) propenone

4- (Trifluoromethyloxy) acetophenone (5.18 g, 24.9 mmol) and 4-Cyclohex-1-enyl- benzaldehyde (4.63 g, 24.9 mmol) were mixed in ethanol (7 mL). NaOH (1.0 g, 25 mmol) was dissolved in water (5 mL) and added to the mixture. The mixture was stirred at room temperature and after 10 min a precipitate was observed and additional ethanol (10 mL) was added and the mixture was stirred for another 30 min. The mixture was poured into water (100 mL). The precipitate was filtered and dried. This crude product was pure enough for subsequent use without further purification (9.18 g, 99%). Alternatively, it can be re- crystallized from heptane to give the pure product.

'H NMR (DMSO-d6) : 61. 60-1.68 (m, 2H), 1.72-1. 80 (m, 2H), 2.23 (m, 2H), 2.40 (m, 2H), 6.35 (t, 1H) ; 7.50 (d, 2H), 7.58 (d, 2H), 7.77 (d, 1H), 7.86 (d, 2H), 7.93 (d, 1H), 8.30 (d, 2H); HPLC-MS (Method C): m/z= 373 (M+1); Rt = 8.90 min.

Building block 3 (General procedure (A)) 3- (4-Cyclohexylphenyl)-1- (3, 5-dichlorophenyl) propenone 'H NMR (DMSO-d6) : 1. 21-1. 51 (m, 5H), 1.72-1. 97 (m, 5H), 2.55 (m, 1H), 7.27 (d, 2H), 7.35 (d, 1H), 7.55 (s, 1 H), 7.59 (d, 2H), 7.84 (d, 1H), 7.86 (s, 2H).

Building block 4 (General procedure (A)) 3-Biphenyl-4-yl-1- (4-chlorophenyl) propenone 'H NMR (DMSO-d6) : #7. 43-7. 56 (m, 6H), 7.60-7. 69 (m, 4H), 7.74 (d, 2H), 7.86 (d, 1H), 7.98 (d, 2H). HPLC-MS (Method C): m/z = (319); R, = 6.86 min.

Building block 5 (General procedure (A)) 3-Biphenyl-4-yl-1-naphthalen-2-ylpropenone

'H NMR (DMSO-d6) : #7. 47 (m, 2H), 7.54-7. 74 (m, 6H), 7.76 (m, 3H), 7.90 (d, 2H), 7.95 (d, 2H), 8.00 (d, 1H), 8.41 (d, 1 H), 8.55 (s, 1 H). HPLC-MS (Method C): m/z = 335 (M+1) ; Rt = 6.83 min.

Building block 6 (General procedure (A)) 1- (4-Cyclohexylphenyl)-3- (4-isopropylphenyl) propenone 'H NMR (DMSO-d6) : #1. 27 (d, 6H), 1.35-1. 53 (m, 5H), 1.78 (m, 1 H), 1.89 (m, 4H), 2.57 (m, 1H), 2.94 (m, 1H), 7.27 (d, 2H), 7.34 (d, 2H), 7.50 (d, 1H), 7.58 (d, 2H), 7.90 (d, 1H), 7.95 (d, 2H). HPLC-MS (Method C): m/z = 333 (M+1); Rt = 7.93 min.

Building block 7 (General procedure (A)) 3-Indan-5-yl-1-(4-trifluoromethoxyphenyl) propenone 'H NMR (DMSO-d6) : # 2. 11 (p, 2H), 2.94 (t, 4H), 7.26 (d, 1H), 7.27 (d, 1H), 7.34 (s, 1H), 7.45 (d, 1 H), 7.49 (d, 2H), 7.84 (d, 1 H), 8.06 (d, 2H); HPLC-MS (Method A): m/z = 333 (M+1); Rt = 5.98 min.

Building block 8 (General procedure (A)) 3- [4- (2, 2-Dimethylpropyl) phenyl]-1- (4-trifluoromethoxyphenyl) propenone

'H NMR (DMSO-d6) : a 0.92 (s, 9H), 2.54 (s, 2H), 7.17 (d, 2H), 7.33 (d, 2H), 7.45 (d, 1H), 7.55 (d, 2H), 7.84 (d, 1 H), 8.07 (d, 2H); HPLC-MS (Method A): m/z= 363 (M+1); R, = 6.56 min.

Building block 9 (General procedure (A)) 1-Benzo [1, 3) dioxol-5-yl-3- (4-cyclohexylphenyl) propenone 'H NMR (DMSO-d6) : #1. 17-1.50 (m, 5H), 1.69-1. 95 (m, 5H), 2.52 (m, 1 H), 6.07 (s, 2H), 6.88 (d, 1H), 7.24 (d, 2H), 7.44 (d, 1H), 7.51 (d, 1 H), 7.55 (d, 2H), 7.64 (dd, 1H), 7.88 (d, 1 H).

Building block 10 (General procedure (A)) 3- (4-Cyclohexylphenyl)-1- (4-isopropylphenyl) propenone 'H NMR (DMSO-d6) : #1. 19-1.49 (m, 5H), 1.30 (d, 6H), 1.68-1. 95 (m, 5H), 2.54 (m, 1H), 2.99 (m, 1 H), 7.26 (d, 2H), 7.35 (d, 2H), 7.47 (d, 1 H), 7.57 (d, 2H), 7.78 (d, 1 H), 7.95 (d, 2H).

Building block 11 (General procedure (A)) 1, 3-Bis-(4-cyclohexylphenyl) propenone 'H NMR (DMSO-d6) : 51. 21-1.56 (m, 10H), 1. 70-1. 98 (m, 10H), 2. 45-2.66 (m, 2H), 7.25 (d, 2H), 7.33 (d, 2H), 7.51 (d, 1 H), 7.58 (d, 2H), 7.80 (d, 1 H), 7.95 (d, 2H).

Building block 12 (General procedure (A)) 1-(4-Isobutylphenyl)-3-(4-trifluoromethoxyphenyl)propenone

'H NMR (DMSO-de) : #0. 93 (d, 6H), 1.93 (m, 1H), 2.55 (d, 2H), 7.24 (d, 2H), 7.29 (d, 2H), 7.51 (d, 1 H), 7.67 (d, 2H), 7.77 (d, 1 H), 7.95 (d, 2H); HPLC-MS (Method D): m/z = 349 (M+1); R, = 5. 97 min.

Building block 13 (General procedure (A)) 1- (4-Cyclopentylphenyl)-3- (4-trifluoromethoxyphenyl) propenone

'H NMR (DMSO-ds) : 61. 57-1.87 (m, 6H), 2.02-2. 18 (m, 2H), 3.07 (p, 1H), 7.25 (d, 2H), 7.38 (d, 2H), 7.51 (d, 1H), 7.66 (d, 2H), 7.78 (d, 1 H), 7.95 (d, 2H); HPLC-MS (Method D): m/z = 361 (M+1); Rt = 6.06 min.

Building block 14 (General procedure (A)) 1-Phenyl-3- (4-trifluoromethoxyphenyl) propenone 'H NMR (DMSO-de) : 57. 27 (d, 2H), 7.45-7. 63 (m, 4H), 7.67 (d, 2H), 7.77 (d, 1 H), 8.00 (d, 2H); HPLC-MS (Method D): m/z = 293 (M+1); R, = 4.97 min.

Building block 15 (General procedure (A)) 1-p-Tolyl-3- (4-trifluoromethoxyphenyl) propenone

'H NMR (DMSO-d6) : 82. 45 (s, 3H), 7.25 (d, 2H), 7.31 (d, 2H), 7.49 (d, 1H), 7.67 (d, 2H), 7.77 (d, 1 H), 7.92 (d, 2H); HPLC-MS (Method D): m/z = 307 (M+1); R, = 5.22 min.

Building block 16 (General procedure (A)) 1-(4-Methoxyphenyl)-3-(4-trifluoromethoxyphenyl)propenone 'H NMR (DMSO-d6) : #3. 90 (s, 3H), 6.99 (d, 2H), 7.25 (d, 2H), 7.50 (d, 1H), 7.67 (d, 2H), 7.77 (d, 1 H), 8.04 (d, 2H); HPLC-MS (Method D): m/z = 323 (M+1); R, = 4.93 min.

Building block 17 (General procedure (A)) 3- (4-Cyclohexylphenyl)-1- (4-trifluoromethoxyphenyl) propenone 'H NMR (CDCI3) : #8. 08 (d, 2H), 7.83 (d, 1H), 7.58 (d, 2H), 7.45 (d, 1H), 7.32 (d, 2H); 7.28 (2, 1H), 2.54 (m, 1H), 1.95-1. 73 (m, 5H), 1.50-1. 20 (m, 5H); HPLC-MS (Method A): m/z= 375 (M+1); R, = 6. 70 min.

Building block 18 (General procedure (A)) 3-Biphenyl-4-yl-1- (4-trifluoromethoxyphenyl) propenone 'H NMR (CDC13) : #8. 09 (d, 2H), 7.87 (d, 1H), 7. 75-7. 60 (m, 6H), 7.52 (d, 1H), 7.49-7. 29 (m, 5 H); HPLC-MS (Method A): m/z = 369 (M+1); Rt = 6.00 min.

Building block 19 (General procedure (A)) 3-Biphenyl-4-yl-1- (4-trifluoromethylsulfanylphenyl) propenone

HPLC-MS (Method A): m/z= 385 (M+1); Rt = 6.18 min.

Building block 20 (General procedure (A)) 3-Biphenyl-4-yl-1-(2, 2,3, 3-tetrafluoro-2, 3-dihydrobenzo [1,4] dioxin-6-yl) propenone HPLC-MS (Method A): m/z = 415 (M+1); Rt = 6.22 min.

Building block 21 (General procedure (A)) 3-(4-Cyclohexylphenyl)-1-(2,2, 3, 3-tetrafluoro-2, 3-dihydrobenzo [1,4] dioxin-6-yl) propenone HPLC-MS (Method A): m/z = 421 (M+1); Rt = 6.76 min.

Building block 22 (General procedure (A)) 3- (4-Cyclohexylphenyl)-1- (3-trifluoromethoxyphenyl) propenone HPLC-MS (Method A): m/z = 375 (M+1); Rt = 6.54 min.

Building block 23 (General procedure (A)) 3-(4-tert-Butylphenyl)-1-(4-trifluoromethylsulfanylphenyl) propenone

HPLC-MS (Method A): m/z = 365 (M+1); Rt = 6. 32 min.

Building block 24 (General procedure (A)) 3-Biphenyl-4-yl-1- (3-bromophenyl) propenone

HPLC-MS (Method A) : m/z= 363 (M+1); Rt = 5.91 min.

Building block 25 (General procedure (A)) 3-Biphenyl-4-yl-1- (3-trifluoromethylphenyl) propenone Building block 26 (General procedure (A)) 3- (4-Bromothiophen-2-yl)-1- (4-trifluoromethoxyphenyl) propenone

HPLC-MS (Method A): m/z = 377 (M+1); Rt = 5.50 min.

Building block 27 (General procedure (A)) 1, 3-Bis- (4-trifluoromethoxyphenyl) propenone

'H NMR (CDCl3) : #8. 31 (d, 2H), 8.05 (d, 2H), 7.99 (d, 1H), 7.80 (d, 1H), 7.56 (d, 2H), 7.47 (d, 2H); HPLC-MS (Method A): m/z = 377 (M+1) ; Rt = 5.83 min.

Building block 28 (General procedure (A)) 3- (4-tert-Butylphenyl)-1- (4-trifluoromethoxyphenyl) propenone 'H NMR (CDCI3) : #8., 07 (d, 2H), 7.82 (d, 1 H), 7.60 (d, 2H), 7.46 (m, 3H), 7.34 (d, 2H), 1.36 (s, 9H); HPLC-MS (Method A) : m/z = 349 (M+1) ; Rt = 6.35 min.

Building block 29 (General procedure (A)) 3- (4-Phenoxyphenyl)-1- (4-trifluoromethoxyphenyl) propenone 'H NMR (CDC13) : #8. 07 (d, 2H), 7.79 (d, 1H), 7.61 (d, 2H), 7.4-7. 3 (m, 5H), 7.18 (t, 1H), 7.1- 7.0 (m, 4H); HPLC-MS (Method A): m/z = 385 (M+1); Rt = 6.12 min.

Building block 30 (General procedure (A)) 3-(3-Phenoxyphenyl)-1-(4-trifluoromethoxyphenyl)propenone 'H NMR (DMSO-d6) : 68. 31 (d, 2H), 7.97 (d, 1H), 7.76 (d, 1H), 7.7 (m, 2H), 7.55-7. 35 (m, 5H), 7.15 (t, 1H), 7.1-7. 0 (m, 3H); HPLC-MS (Method A): m/z = 385 (M+1) ; Rt = 6.09 min.

Building block 31 (General procedure (A)) 3- (4-Benzyloxyphenyl)-1- (4-trifluoromethoxyphenyl) propenone

'H NMR (CDCI3) : 98. 05 (d, 2H), 7.78 (d, 1 H), 7.60 (d, 2H), 7.45-7. 30 (m, 8H), 7.00 (d, 2H), 5.13 (s, 2H); HPLC-MS (Method A): m/z= 399 (M+1); Rt = 6.04 min.

Building block 32 (General procedure (A)) 3- (4-Cyclohexylphenyl)-1- (3, 4-difluorophenyl) propenone 'H NMR (CDCl3): #7. 90-7.80 (m, 3H), 7.60 (d, 2H), 7.43 (d, 1H), 7.3 (m, H), 2.55 (m, 1H), 1.9-1. 75 (m, 5H), 1.5 (m, 5H) ; HPLC-MS (Method A): m/z = 327 (M+1) ; Rt = 6.20 min.

Building block 33 (General procedure (A)) 1- (4-sec-Butylphenyl)-3- (3-phenoxyphenyl) propenone HPLC-MS (Method A): m/z = 357 (M); R, = 7.16 min.

Building block 34 (General procedure (A)) 3-[3-(4-Chlorophenoxy)phenyl]-1-(5, 6,7, 8-tetrahydronaphthalen-2-yl) propenone

HPLC-MS (Method A) : m/z = 389 (M+1); Rt = 7.68 min.

Building block 35 (General procedure (A)) 3- (4-Benzyloxyphenyl)-1- (3-bromophenyl) propenone HPLC-MS (Method A): m/z = 393 (M+1); Rt = 6.82 min.

Building block 36 (General procedure (A) ) 1-Biphenyl-4-yl-3- (4-cyclohexylphenyl) propenone 'H NMR (DMSO-d6) : 61. 20-1. 50 (5H, m), 1.65-1. 85 (5H, m), 7.33 (2H, d), 7.45 (2H, d), 7.53 (2H, dd), 7.53-7. 92 (6H, m), 8.25 (1H, d); HPLC-MS (Method C): m/z = 367 (M+1); Rt = 9.18 min.

Building block 37 (General procedure (A)) 1- (2-Chlorophenyl)-3- (4-cyclohexylphenyl) propenone

'H NMR (DMSO-d6) : #1.15 -1.48 (5H, m), 1.62-1. 85 (5H, m), 7. 17- 7. 30 (5H, m), 7.37 (1H, d), 7.49 (1 H, d), 7.56 (2H, dd), 7.67 (1 H, d), 8.21 (1 H, s), 8.53 (1H, t); HPLC-MS (Method C): m/z = 325 (M+1); Rt = 8.47 min.

Building block 38 (General procedure (A)) 3- (4-Cyclohexylphenyl)-1- (2-trifluoromethylphenyl) propenone 'H NMR (DMSO-d6) : #1. 15-1.48 (5H, m), 1. 65-1.88 (5H, m), 7.22 (1 H, s), 7.30 (3H, d), 7.66 (3H, d), 7.72-7. 82 (2H, m), 7.89 (1H, d); HPLC-MS (Method C): m/z = 359 (M+1); Rt = 8.47 min.

Building block 39 (General procedure (A)) 1- (4-fert-Butylphenyl)-3- (4-cyclohexylphenyl) propenone 'H NMR (DMSO-d6) : #1. 25-1.47 (14H, m), 1.65-1. 85 (5H, m), 7.31 (2H, d), 7.58 (2H, d), 7.65-7. 90 (4H, m), 8.07 (2H, d); HPLC-MS (Method C): m/z = 347 (M+1); Rt = 9.22 min.

Building block 40 (General procedure (A)) 3- (4-Cyclohexylphenyl)-1- (4-phenoxyphenyl) propenone

'H NMR (DMSO-d6) : 61. 2-1.5 (5H, m), 1.7-1. 85 (5H, m), 7.08 (2H, d), 7.14 (2H, d), 7.31 (3H, m), 7.47 (2H, dd), 7.67-7. 90 (4H, m), 7.20 (2H, d); HPLC-MS (Method C): m/z = 383 (M+1); Rt=9. 13min.

Building block 41 (General procedure (A) ) 3- (4-Cyclohexylphenyl)-1- (4-piperidin-1-ylphenyl) propenone 'H NMR (DMSO-d6) : 91. 20-1.50 (5H, m), 1.59 (6H, s), 1.62-1. 83 (5H, m), 3.40 (4H, s), 6.98 (2H, d), 7.29 (2H, d), 7.62 (1 H, d), 7.76 (2H, d), 7.84 (1 H, d), 8.02 (2H, d) ; HPLC-MS (Method C): m/z = 374 (M+1); Rt = 8.30 min.

Building block 42 (General procedure (A)) 3- (4-Trifluoromethoxyphenyl)-1- (4-trifluoromethylsulfanylphenyl) propenone HPLC-MS (Method A): m/z = 393 (M+1); Rt = 6.05 min.

Building block 43 (General procedure (A)) 1- (3-Trifluoromethoxyphenyl)-3- (4-trifluoromethoxyphenyl) propenone

HPLC-MS (Method A): m/z = 377 (M+1); Rt = 5.87 min.

Building block 44 (General procedure (A)) 1-3- (Biphenyl-4-yl)-1- (4-cyclohexylphenyl) propenone HPLC-MS (Method A): m/z = 367 (M+1) ; Rt = 6.82 min.

Building block 45 (General procedure (A)) 1- (4-tert-butylphenyl)-3- (4-trifluoromethoxyphenyl) propenone 'H NMR (DMSO-d6) : a 1. 33 (s, 9H), 7.43-7. 50 (d, 2H), 7.58-7. 7.63 (d, 2H), 7.72-7. 79 (d, 2H), 7.94 (s, 1H) ; 7.97-8. 14 (m, 4H); HPLC-MS (Method C): m/z= 349 (M+1) ; Rt = 6.70 min.

Building block 46 (General procedure (A)) 1- (2, 2,3, 3-Tetrafluoro-2, 3-dihydrobenzo [1,4] dioxin-6-yl)-3- (4-trifluoromethoxyphenyl)- propenone

'H NMR (DMSO-d6) selected : 57. 42-7.50 (d, 2H), 7.67-7. 73 (d, 1H), 7.78-7. 76 (d, 1H), 7.99 (s, 1 H), 8.03-8. 11 (d, 2H); 8.13-8. 18 (d, 1 H), 8.33 (s, 1 H) ; HPLC-MS (Method D): m/z = 423 (M+1); Rt = 5.97 min.

Building block 47 (General procedure (A)) 1- (4-Chlorophenyl)-3- (4-cyclohexylphenyl) propenone 'H NMR (DMSO-d6) : 61. 18-1.53 (m, 5H), 1.66-1. 89 (m, 5H), 2.51-2. 62 (m, 1H), 7.27-7. 36 (d, 2H), 7.60-7. 69 (d, 2H); 7.70-7. 93 (m, 4H), 8. 13-8. 23 (d, 2H); HPLC-MS (Method C): m/z= 325 (M+1); Rt = 7.33 min.

Microanalysis : Calculated for C2, H2, CIO, 0.25 H20 : C, 76.58% ; H, 6.58% ; Found: C, 76.24% ; H, 6.53%.

Building block 48 (General procedure (A)) 3- (4-Cyclohexylphenyl)-1- (5, 6,7, 8-tetrahydronaphthalen-2-yl) propenone 'H NMR (DMSO-d6) : 51. 20-1. 52 (m, 5H), 1.68-1. 86 (m, 9H), 2.52-2. 61 (m, 1 H), 2.77-2. 87 (m, 4H), 7.21-7. 26 (d, 1 H) ; 7.28-7. 34 (d, 2H), 7.64-7. 73 (d, 1 H), 7.78-7. 90 (m, 5H); HPLC-MS (Method A): m/z = 345 (M+1) ; Rt = 7.04 min.

Microanalysis : Calculated for C2sH280, 0.25 H2O : C, 86. 04% ; H, 8.23% ; Found: C, 86.60% ; H, 8.35%.

Building block 49 (General procedure (A)) 1- (5, 6,7, 8-Tetrahydronaphthalen-2-yl)-3- (4-trifluoromethoxyphenyl) propenone

'H NMR (DMSO-d6) : 51. 72-1.83 (m, 4H), 2.74-2. 89 (m, 4H), 7. 21-7. 29 (d, 1 H), 7.41-7. 49 (d, 2H), 7.70-7. 80 (d, 1 H) ; 7.80-7. 99 (m, 4H), 8.00-8. 08 (d, 1 H) ; HPLC-MS (Method C): m/z = 347 (M+1); Rt = 7.07 min.

Microanalysis : Calculated for C20H17F3O2 : C, 69.36% ; H, 4.95% ; Found: C, 69.13% ; H, 4. 96% Building block 50 (General procedure (A)) 3-(4-Chlorophenyl)-1-(4-cyclohexylphenylpropenone 'H NMR (DMSO-d6) : 61. 18-1.55 (m, 5H), 1.68-1. 91 (m, 5H), 2.56-2. 69 (m, 1H), 7.37-7. 47 (d, 2H), 7.48-7. 57 (d, 2H); 7.66-7. 78 (d, 1H), 7.88-8. 02 (m, 3H), 8.04-8. 14 (d, 2H); HPLC-MS (Method C): m/z = 325 (M+1); Rt = 7.40 min.

Microanalysis : Calculated for C21H2, CIO, 0.25 H20 : C, 76. 58% ; H, 6.58% ; Found: C, 76.54% ; H, 6.43%.

Building block 51 (General procedure (A)) 1-Biphenyl-4-yl-3- (4-cyclohexylphenyl) propenone 1H NMR (CDCl3): #1. 20-1.52 (m, 5H), 1.71-1. 95 (m, 5H), 2.49-2. 61 (m, 1 H), 7.30 (d, 1 H), 7.37-7. 52 (m, 5H); 7.56-7. 68 (m, 4H), 7.69-7. 76 (d, 2H), 7.79-7. 87 (d, 1H), 8.05-8. 13 (d, 2H); HPLC-MS (Method C): m/z = 367 (M+1); Rt = 8.00 min.

Building block 52 (General procedure (A)) 1- (4-Cyclohexylphenyl)-3- (4-trifluoromethoxyphenyl) propenone

HPLC-MS (Method A): m/z = 375 (M+1); Rt = 6.60 min.

Building block 53 (General procedure (A) ) 1-Biphenyl-4-yl-3- (4-trifluoromethoxyphenyl) propenone

HPLC-MS (Method A): m/z = 369 (M+1) ; Rt = 5.86 min.

Building block 54 (General procedure (A)) 1- (4-Cyclohexylphenyl)-3- (3, 5-dichlorophenyl) propenone HPLC-MS (Method A): mlz = 360 (M+1); Rt = 6.52 min.

Building block 55 (General procedure (A)) 3- (3-Bromophenyl)-1- (4-cyclohexylphenyl) propenone

HPLC-MS (Method A): m/z = 369 (M+1) ; Rt = 6.39 min.

Building block 56 (General procedure (A)) 3- (4-Methylphenyl)-1- (4-chlorophenyl) propenone

HPLC-MS (Method A): m/z = 257 (M+1) ; Rt = 5.05 min.

This compound is known (Tet Lett. 39 (16), 2235, (1998)) Building block 57 (General procedure (A)) 1, 3-Bis- (4-chlorophenyl) propenone This compound is known (Chem. Ber. 42,1813, (1909) ) Building block 58 (General procedure (A)) 3- (4-Cyclohexylphenyl)-1-indan-5-ylpropenone 'H NMR (DMSO-d6) : 61. 20-1.51 (m, 5H), 1.70-1. 97 (m, 5H), 2.15 (p, 2H), 2.54 (m, 1H), 2.97 (t, 4H), 7.25 (d, 2H), 7.32 (d, 1 H), 7.48 (d, 1 H), 7.55 (d, 2H), 7.78 (d, 1 H), 7.82 (d, 1 H), 7.86 (s, 1H).

HPLC-MS (Method C): m/z = 331 (M+1); Rt = 6.46 min.

Building block 59 (General procedure (A)) 3- (4-Cyclohexylphenyl)-1- (4-isobutylphenyl) propenone

'H NMR (DMSO-d6) : 5 0. 95 (d, 6H), 1.21-1. 50 (m, 5H), 1.75 (m, 1H), 1.78-2. 20 (m, 5H), 2.49 (m, 1H), 2.57 (d, 2H), 7.25 (d, 2H), 7.27 (d, 2H), 7.49 (d, 1H), 7.56 (d, 2H), 7.79 (d, 1H), 7.94 (d, 2H).

HPLC-MS (Method C): m/z = 347 (M+1) ; Rt = 6.69 min.

Building block 60 (General procedure (A)) 3-(4-Cyclohexylphenyl)-1-(4-cyclopentylphenyl)propenone 'H NMR (DMSO-d6) : 51. 22-1.50 (m, 5H), 1.62-1. 96 (m, 11H), 2.04-2. 20 (m, 2H), 2.54 (m, 1 H), 3.07 (p, 1 H), 7.25 (d, 2H), 7.38 (d, 2H), 7.50 (d, 1 H), 7.56 (d, 2H), 7.80 (d, 1 H), 7.95 (d, 2H).

HPLC-MS (Method C): m/z = 359 (M+1); Rt = 6.77 min.

Building block 4 (General procedure (A)) 3- (4-Cyclohexylphenyl)-1-phenylpropenone 'H NMR (DMSO-d6): #1. 22-1.54 (m, 5H), 1.71-1. 96 (m, 5H), 2.46-2. 63 (m, 1H), 7.25 (d, 2H), 7.44-7. 62 (m, 6H), 7.80 (d, 1 H), 8.02 (d, 2H).

HPLC-MS (Method C): m/z = 291 (M+1); Rt = 5.91 min.

Building block 5 (General procedure (A)) 3- (4-Cyclohexylphenyl)-1- (4-methylphenyl) propenone

'H NMR (DMSO-d6) : 61. 21-1.55 (m, 5H), 1.69-1. 96 (m, 5H), 2.43 (s, 3H), 2.46-2. 64 (m, 1H), 7.25 (d, 2H), 7.30 (d, 2H), 7.49 (d, 1 H), 7.57 (d, 2H), 7.80 (d, 1 H), 7.93 (d, 2H).

HPLC-MS (Method A): m/z = 305 (M+1) ; Rt = 6.15 min.

Building block 6 (General procedure (A)) 3-(4-Cyclohexylphenyl)-1-(4-methoxyphenyl) propenone 'H NMR (DMSO-dd 1. 19-1.54 (m, 5H), 1.68-1. 95 (m, 5H), 2.45-2. 62 (m, 1H), 3.90 (s, 3H), 6.96 (d, 2H), 7.25 (d, 2H), 7.50 (d, 1 H), 7.56 (d, 2H), 7.79 (d, 1H), 8.04 (d, 2H).

HPLC-MS (Method A): =321 (M+1); Rt = 5.85 min.

Building block 61 (General procedure (A)) 1- (4-fert-Butylphenyl)-3- (4-trifluoromethoxyphenyl) propenone 4- (Trifluoromethoxy) benzaldehyde (16,5 g, 87 mmol) and 4-tert-butylacetophenone (15.3 g, 87 mmol) were dissolved in ethanol 99% (25 mL). The solution was added sodium hydroxide (8N, 16.2 mL) The reaction mixture was stirred for 1« hours, diluted with water (100 mL), filtered after 2« hours, and washed with water. The product was dried in vacuo and then suspended in ethanol (80 mL) and stirred for 1 Y2 h at 20°C. The mixture was placed in the refrigerator for 16 h and the precipitated product was filtered off and washed with ice-cooled 99% ethanol and dried to afford 11.5 g (38%) of 1- (4-fert-butylphenyl)-3- (4- trifluoromethoxyphenyl)propenone..

HPLC-MS (Method C): m/z = 349 (M+1); R, = 7.10 min.

Building block 62 <BR> <BR> 1- (3, 5-Bis-trifluoromethylphenyl)-3- (4-cyclohexylphenyl) propenone

3', 5'-Bis(trifluoromethyl)acetophenone (9.3 g, 36.3 mmol) and 4-cyclohexylbenzaldehyde (6. 83 g, 36.3 mmol) was dissolved in NMP (18 mL). Zinc (ll) acetate (398 mg, 1.8 mmol) and 2,2'-bipyridine (283 mg, 1.81 mmol) were added and the mixture was heated at 100°C under nitrogen for 16 hours. After cooling the mixture was partitioned between heptane (250 mL) and water (250 mL). The organic phase was dried (NaSO4) and evaporated to dryenes to give the crude material that could be recrystalized from heptane to give the pure title com- pound as a solid. Yield: 5.8 g (38 %).

HPLC-MS (Method D): m/z = 427 (M+1); Rt = 6.71 min.

General procedure (B) General procedure (B) for solid phase synthesis of compounds of the general formula (15) : 0 0 Ho9HFmoc HO) XXO M H Resin. OH Resin-O m"H-Fmoc Step 1 R4 Step2 0 E 0 3 owt 0 E 0 H E O Step3 Step 3 a p= O R O 0 R4 0 R 0 0 HO", N O XD (5) 5tep 4 a HA

wherein X, D, E, m, n and R4 are as defined for formula (I), and Resin is a polystyrene resin loaded with a Wang-linker.

Step 1: This reaction is known (Wang S. J. , J. Am. Chem. Soc. 95,1328, 1973) and is generally per- formed by stirring polystyrene resin loaded with a linker such as the Wang linker with a 4-10 molar excess of Fmoc-protected amino acid activated with a 2-5 molar excess of diisopropyl- carbodiimide, dicyclohexylcarbodiimide or 1- [3- (dimethylamino) propyl]-3-ethylcarbodiimide hydrochloride in the presence of a catalyst such as N, N4-dimethylaminopyridine. The ester- fication is carried out in solvent such as THF, dioxane, toluene, DCM, DMF, NMP or a mix- ture of two or more of these. The reactions are performed between 0 °C and 80 °C, prefera- bly between 20 °C to 40 °C. When the esterification is complete excess of reagent is re- moved by filtration. The resin is successively washed with the solvent used in the reaction, followed by washing with methanol. The resin bound product can be further dried and ana- lyzed.

Step 2: N-Fluorenylmethylcarbonyl protecting group is removed by treating the resin bound deriva- tive with a 20%-50% solution of a secondary amine such as piperidine in a polar solvent such

as DMF or NMP (Carpino L., Han G. , J. Org. Chem. 37,3404, 1972). The reaction is per- formed between 20 °C to 180 °C, preferably between 20 °C to 40 °C. When the reaction is complete excess of reagent is removed by filtration. The resin is successively washed with solvent used in the reaction. The resulting resin bound intermediate is acylated with acid.

The acylation is known (The combinatorial index, Ed. Bunin B. A. , 1998, Acedemic press, p.

78) and is generally performed by stirring the resin bound intermediate with a 2-5 molar ex- cess of acid activated with a 2-5 molar excess of of diisopropyl-carbodiimide, dicyclohexyl- carbodiimide or 1- [3- (dimethylamino) propyl]-3-ethylcarbodiimide hydrochloride in the pres- ence of a side reaction inhibitor such as N-hydroxybenzotriazole. The acylation is carried out in a solvent such as THF, dioxane, toluene, DCM, DMF, NMP or a mixture of two or more of these. The reactions are performed between 0 °C to 80 °C, preferably between 20 °C to 40 °C. When the esterification is complete excess of reagent is removed by filtration. The resin is successively washed with the solvent used in the reaction, followed by washing with methanol, The resin bound product can be further dried and analyzed.

Step 3: This reaction has not previously been reported on solid support but is a modification of a so- lution based procedure (Stetter H., Krasselt J. J. Heterocyclic. Chem. 14,573, 1977). The addition of aldehydes to activated double bonds is generally carried out by stirring the alde- hyde with a compound that contains an activated dobbelt bond such as a substituted prope- none in the presence of a catalyst such as sodium or potassium cyanide or thiazolium salts such as 3, 4-dimethyl-5- (2-hydroxyethyl) thiazolium iodide, 3-benzyl-5- (2-hydroxyethyl)-4- methyl-1, 3-thiazolium chloride, 3-ethyl-5- (2-hydroxyethyl)-4-methyl-1, 3-thiazolium bromide or vitamin B,. When thiazolium salts are used as catalyst, a non-nucleophilic amine base such as triethyl amine, N, N-diisopropylethylamine or DBU is added. The addition is carried out in a solvent such as dioxane, DMSO, NMP or DMF or a mixture of two or more of these. The re- actions are performed between 50 °C to 120 °C, preferably between 50 °C to 80 °C. When the reaction is complete, excess of reagent is removed by filtration. The resin is successively washed with the solvent used in the reaction, followed by washing with methanol. The resin bound product can be further dried and analyzed.

Step 4: The reaction is known (The combinatorial index, Ed. Bunin B. A. , 1998, Acedemic press, p.

21) and is generally performed by stirring the resin bound intermediate obtained in step 3 with a 50-95 % solution of TFA. The final cleavage is carried out in a solvent such as THF, DCM, 1,2 dichloroethane, 1, 3-dichloropropane, toluene or a mixture or more of these. The

reactions are performed between 0 °C to 80 °C, preferably between 20 °C to 40 °C. When the reaction is complete the product is removed by filtration. The resin is successively washed with DCM. The product and washings are collected. The solvent is removed and the product is dried in vacuo.

The procedure is illustrated in the following example.

Example 1 (General procedure (B)) 3- {4- [2-Biphenyl-4-yl-4-oxo-4- (4-trifluoromethoxyphenyl) butyryl] benzoylamino} propionic acid Step 1 and Step 2: Resin bound 3- (4-formvlbenzovlamino) propionic acid 3- (4-Formylbenzoylamino) propionic acid resin bound to a Wang resin (loading approximately 0.2-0. 8 mmol/g) was synthesized according to the procedure described in WO 00/69810.

Step 3 and Step 4: Preparation of 3-f4-f2-biphenvl-4-vl-4-oxo-4- (4-trifluoromethoxvphenyl)- butyryllbenzovlaminolpropionic acid The above resin bound 3- (4-formylbenzoylamino) propionic acid (496 mg resin) was sus- pended in NMP (10 mL). 3, 4-Dimethyl-5- (2-hydroxyethyl) thiazolium iodide (432 mg, 1.5 mmol), 3-biphenyl-4-yl-1- (4-trifluoromethoxyphenyl) propenone (1.05 g, 2.7 mmol) and DBU (225 uL, 1.50 mmol) were added and the suspension was shaken at 70 °C for 16 hours. The resin was isolated by filtration and washed with DMF (3 x 10 mL), ethanol (2 x 10 mL), DCM (10 x 10 mL). The resin bound 3- {4- [2-biphenyl-4-yi-4-oxo-4- (4-trifluoromethoxyphenyl)- butyryl] benzoylamino} propionic acid was treated with 50% TFA in DCM (10 mL) for 0.5 hour at 25 °C. The mixture was filtered and the resin was washed with DCM (10 mL). The com- bined filtrates were concentrated in vacuo to afford an oil which was purified on silica gel col- umn eluted with DCM/methanol/acetic acid (95: 4: 1) to afford the title compound.

'H NMR (CDCI3) : 68. 07 (d, 2H), 8.02 (d, 2H), 7.79 (d, 2H), 7.55-7. 48 (m, 4H), 7.42-7. 24 (m, 7 H); 7.05 (t, 1 H), 5.32 (dd, 1 H), 4.20 (dd, 1 H), 3.68 (q, 2 H), 3.30 (dd, 1 H), 2.64 (t, 2H); HPLC-MS (Method A): m/z= 590 (M+1) ; Rt = 5.15 min.

The following examples were made as described above.

Example 2 (General procedure (B)) 3- {4- [2-Biphenyl-4-yl-4-oxo-4- (3-trifluoromethylphenyl) butyryl] benzoylamino} propionic acid

'H NMR (CDCI3) : (58. 24 (s, 1H), 8.17 (d, 1H), 8.09 (d, 2H), 7.85-7. 75 (m, 3H), 7.64-7. 49 (m, 5H); 7.44-7. 30 (m, 5H), 6.82 (t, 1 H), 5.35 (dd, 1 H), 4.26 (dd, 1 H), 3.71 (q, 2H), 3.36 (dd, 1 H), 2.70 (t, 2H) ; HPLC-MS (Method A): m/z = 574 (M+1); Rt = 5.04 min.

Example 3 (General procedure (B)) 3-{4-[2-(4-Cyclohexylphenyl)-4-oxo-4-(4-trifluoromethylsulfa nylphenyl)butyryl]benzoylamino}- propionic acid

'H NMR (CDCI3) : 68. 04 (d, 2H), 7.97 (d, 2H), 7.76 (d, 2H), 7.72 (d, 2H), 7.20 (d, 2H); 7.14 (d, 2H), 6.88 (t, 1 H), 5.24 (dd, 1 H), 4.17 (dd, 1H), 3.70 (q, 2H), 3.25 (dd, 1 H), 2.68 (t, 2H), 2.42 (m, 1 H), 1.85-1. 68 (m, 5H), 1.45-1. 15 (m, 5H); HPLC-MS (Method A) : m/z = 612 (M+1); R, = 5.78 min.

Example 4 (General procedure (B)) <BR> <BR> 3- {4- [4- (3, 5-Bistrifluoromethylphenyl)-2- (4-cyclohexylphenyl)-4-oxobutyryl] benzoylamino}- propionic acid

'H NMR (DMSO-d6) : #8. 69 (t, 1H), 8.61 (s, 2H), 8.43 (s, 1H), 8.14 (d, 2H), 7.90 (d, 2H); 7.34 (d, 2H), 7.17 (d, 2H), 5.42 (dd, 1H), 4.29 (dd, 1H), 3.64 (dd, 1H), 1.78-1. 64 (m, 5H), 1.38- 1.25 (m, 5H); HPLC-MS (Method A): m/z = 648 (M+1); Rt = 5.77 min.

Example 5 (General procedure (B)) 3- {4- [2-biphenyl-4-yl-4- (3-bromophenyl)-4-oxobutyryl] benzoylamino} propionic acid

'H NMR (DMSO-d6) : 5 8. 65 (t, 1H), 8.19 (m, 3H), 8.06 (d, 1 H), 7.93-7. 83 (m, 3H), 7.60 (m, 4H); 7.50 (m, 3H), 7.43 (m, 2H), 7.34 (m, 1 H), 5.50 (dd, 1 H), 4.20 (dd, 1 H) ; HPLC-MS (Method A): m/z = 586 (M+1); R, = 4.99 min.

Example 6 (General procedure (B)) 3-{4-[2-Biphenyl-4-yl-4-oxo-4-(2, 2,3, 3-tetrafluoro-2, 3-dihydrobenzo[1, 4] dioxin-6-yl) butyryl]- benzoylamino} propionic acid

'H NMR (CDCl3) : 68. 09 (d, 2H), 7.86-7. 75 (m, 4H), 7.55-7. 50 (m, 4H), 7.45-7. 30 (m, 5H), 7.23 (d, 2H); 6.78 (t, 1 H), 5.83 (dd, 1H), 4.18 (dd, 1H), 3.72 (q, 2H), 3.28 (dd, 1H), 2.71 (t, 2H); HPLC-MS (Method A): m/z = 636 (M+1); Rt = 5.30 min.

Microanalysis : Calculated for C34H2sF4NO7, 0.75 H20 : C, 62.92% ; H, 4. 11% ; N, 2.16%. Found: C, 62.94% ; H, 3.99% ; N, 2.25%.

Example 7 (General procedure (B)) 3-{4-[2-(4-Cyclohexylphenyl)-4-oxo-4-(2, 2,3, 3-tetrafluoro-2, 3-dihydrobenzo [1,4] dioxin-6-yl)- butyryl] benzoylamino} propionic acid

'H NMR (CDCl3) : 68. 04 (d, 2H), 7.82-7. 70 (m, 4H), 7.23-7. 10 (m, 5H), 6.82 (t, 1H), 5.23 (dd, 1 H) ; 4.13 (dd, 1 H), 3.72 (br q, 2H), 3.20 (dd, 1 H), 2.70 (br t, 2H), 2.44 (m, 1 H), 1.85-1. 70 (m, 5H), 1.46-1. 15 (m, 5H) Example 8 (General procedure (B)) 3- {4- [2-Biphenyl-4-yl-4- (3, 5-bis-trifluoromethylphenyl)-4-oxobutyryl] benzoylamino} propionic acid

'H NMR (DMSO-d6) : #8. 64 (m, 3H), 8.42 (s, 1H), 8.20 (d, 2H), 7.92 (d, 2H), 7.62 (m, 4H); 7.54 (m, 2H), 7.42 (m, 2H), 7.31 (m, 1 H), 5.52 (dd, 1 H), 4.34 (dd, 1 H) ; HPLC-MS (Method A): m/z = 642 (M+1); Rt = 5.31 min.

Example 9 (General procedure (B)) 3- {4- [2- (4-tert-Butylphenyl)-4-oxo-4- (4-trifluoromethylsulfanylphenyl) butyryl] benzoylamino}- propionic acid 'H NMR (DMSO-d6) : 58. 64 (t, 1H), 8.13 (m, 4H), 7.90 (m, 4H), 7.33 (s, 4H), 7.62 (m, 4H), 5.43 (dd, 1H), 4.12 (dd, 1 H) ; HPLC-MS (Method A) : m/z = 586 (M+1); Rt = 5. 43 min.

Example 10 (General procedure (B)) 3- {4- [2- (4-Bromothiophen-2-yl)-4- (3, 4-dichlorophenyi)-4-oxobutyryl] benzoylamino} propionic acid 'H NMR (DMSO-d6) : #8. 71 (t, 1H), 8.27 (s, 1H), 8.20 (d, 2H), 7.96 (m, 3H), 7.81 (d, 1H), 7.53 (s, 1 H), 7.20 (s, 1 H) ; HPLC-MS (Method A): m/z = 583 (M+1) ; Rt = 4. 81 min.

Example 11 (Generai procedure (B)) 3- {4- [2- (4-Bromothiophen-2-yl)-4- (4-chloro-3-methylphenyl)-4-oxobutyryl] benzoylamino}- propionic acid

'H NMR (DMSO-d6) : #8. 68 (t, 1H), 8.18 (d, 2H), 8.04 (d, 1H), 7.95 (d, 2H), 7.87 (dd, 1H), 7.55 (m, 2H), 7.17 (s, 1 H), 5.75, (dd, 1H), 4.10 (dd, 1 H) ; HPLC-MS (Method A): m/z = 563 (M+1); Rut = 4. 81 min.

Example 12 (General procedure (B)) 3- {4- [2- (4-tert-Butylphenyl)-4-oxo-4- (3-trifluoromethylphenyl) butyryl] benzoylamino} propionic acid HPLC-MS (Method A): m/z = 554 (M+1); Rt = 5.14 min.

Example 13 (General procedure (B)) 3- (4- [2-Biphenyl-4-yl-4-oxo-4- (4-trifluoromethylsulfanylphenyl) butyryl] benzoylamino} propionic acid 'H NMR (CDCI3) : #8. 08 (d, 2H), 8.00 (d, 2H), 7.80-7. 68 (m, 5H), 7.56-7. 48 (m, 4H), 7.42- 7.32 (m, 4H), 6.97 (t, 1H), 5.32 (dd, 1H); 4.22 (dd, 1H), 3.71 (q, 2H), 3.32 (dd, 1H), 2.70 (t, 2H); HPLC-MS (Method B): m/z = 606 (M+1); R, = 5.34 min.

Example 14 (General procedure (B)) <BR> <BR> 3- {4- [2- (4-Benzyloxyphenyl)-4-oxo-4- (4-trifluoromethoxyphenyl) butyryl] benzoylamino}- propionic acid

'H NMR (CDCI3,) : #7. 95 (m, 4H), 7.68 (d, 2H), 7.4-7. 15 (m, 10H), 6.85 (m, 2H), 5.15 (d, 1H), 4.93 (s, 2H), 4.10 (m, 2H); HPLC-MS (Method A): m/z = 620 (M+1); Rt = 5.04 min.

Example 15 (General procedure (B)) 3- {4- [4-Oxo-2- (4-phenoxyphenyl)-4- (4-trifluoromethoxyphenyl) butyryl] benzoylamino}- propionic acid

HPLC-MS (Method A): m/z = 606 (M+1); Rt = 5.29 min.

Example 16 (General procedure (B)) <BR> <BR> 3- {4- [2- (4-tert-Butylphenyl)-4-oxo-4- (4-trifluoromethoxyphenyl) butyryl] benzoylamino}- propionic acid

HPLC-MS (Method A): m/z = 570 (M+1); Rt = 5.42 min.

Example 17 (General procedure (B)) 3- {4- [4-Oxo-2- (3-phenoxyphenyl)-4- (4-trifluoromethoxyphenyl) butyryl] benzoylamino}- propionic acid

HPLC-MS (Method A): m/z = 606 (M+1) ; Rt = 5.20 min.

Example 18 (General procedure (B)) 3- {4- [2-Biphenyl-4-yl-4- (4-chlorophenyl)-4-oxobutyryl] benzoylamino} propionic acid HPLC-MS (Method A): m/z = 540 (M); Rt = 4.85 min.

Example 19 (General procedure (B)) 3- [4- (2-Biphenyl-4-yl-4-naphthalen-2-yl-4-oxobutyryl) benzoylamino] propionic acid

HPLC-MS (Method A): m/z = 556 (M); R, = 4.97 min.

Example 20 (General procedure (B)) 3- {4- [4- (4-sec-Butylphenyl)-4-oxo-2- (3-phenoxyphenyl) butyryl] benzoylamino} propionic acid HPLC-MS (Method A): m/z = 578 (M); Rt = 5.62 min.

Example 21 (General procedure (B)) 3- {4- [2- [3- (4-Chlorophenoxy) phenyl]-4-oxo-4- (5, 6,7, 8-tetrahydronaphthalen-2-yl) butyryl]- benzoylamino} propionic acid

HPLC-MS (Method A) : m/z = 610 (M); Rt = 5.56 min.

Example 22 (General procedure (B) ) 3-{4-[2-(4-Benzyloxyphenyl)-4-(3-bromophenyl)-4-oxobutyryl]b enzoylamino}propionic acid

HPLC-MS (Method A): m/z = 616 (M+1); Rt = 5.07 min.

Example 23 (General procedure (B)) 3-{4-[4-(4-Cyclohexylphenyl)-2-(4-isopropylphenyl)-4-oxobuty ryl]benzoylamino}propionic acid HPLC-MS (Method A) : m/z = 554 (M); Rt = 6.04 min.

Example 24 (General procedure (B)) 3- {4- [4-Biphenyl-4-yl-2- (4-cyclohexylphenyl)-4-oxobutyryl] benzoylamino} propionic acid

'H NMR (CDCl3): #1. 05-1.42 (5H, m), 1.55-1. 89 (5H, m), 2.41 (1H, m), 2.62 (2H, m), 3.31 (1 H, d, 3.63 (2H, m), 4.20 (1H, m), 5.23 (1H, m), 7.12 (2H, d), 7.21 (1 H, d), 7.38 (1H, d), 7.42 (2H, d), 7.58-7. 80 (6H, m), 7.99 (4H, dd); HPLC-MS (Method C): m/z = 588 (M+1); Rt = 7.97 min.

Example 25 (General procedure (B)) <BR> <BR> 3- {4- [4- (2-Chlorophenyi)-2- (4-cyclohexylphenyl)-4-oxobutyryl] benzoylamino} propionic acid 'H NMR (DMSO-d6) : 91. 15-1.45 (6H, m), 1.63-1. 80 (5H, m), 3.94 (1H, m), 5.40 (1H, m), 7.14 (1H, d), 7.30 (2H, dd), 7.47 (1 H, d), 7.54 (3H, m), 7.90 (2H, dd), 7.97 (1 H, d), 8.14 (1H, d), 8.68 (1 H, t). 12.25 (1 H, bs); HPLC-MS (Method C): m/z = 546 (M+1); Rt = 7.32 + 7.40 min.

Example 26 (General procedure (B)) <BR> 3- {4- [2- (4-Cyclohexylphenyl)-4-oxo-4- (2-trifluoromethylphenyl) butyryl] benzoylamino}- propionic acid

'H NMR (DMSO-d6) : F1. 15-1.40 (5H, m), 1.65-1. 87 (5H, m), 3.47 (2H, q), 3.99 (1H, m), 5.43 (1H, m), 7.14 (2H, d), 7.31 (2H, d), 7.65-8. 00 (6H, m), 8.15 (2H, d), 8.68 (1H, t), 12.23 (1H, bs); HPLC-MS (Method C): m/z = 580 (M+1); Rt = 7.67 min.

Example 27 (General procedure (B)) 3- {4- [4- (4-tert-Butylphenyl)-2- (4-cyclohexylphenyl)-4-oxobutyryl] benzoylamino} propionic acid

'H NMR (DMSO-d6) : S 1. 15-1.40 (14H, m), 1.65-1. 80 (5H, m), 3.47 (2H, q), 4.08 (1H, m), 5.38 (1 H, m), 7.15 (2H, d), 7.31 (2H, d), 7.53 (2H, d), 7. 85-8. 00 (4H, m), 8.13 (2H, d), 8.67 (1 H, t); HPLC-MS (Method C): m/z = 568 (M+1) ; Rt = 8.47 min.

Example 28 (General procedure (B)) <BR> <BR> 3- {4- [2- (4-Cyclohexylphenyl)-4-oxo-4- (4-piperidin-1-ylphenyl) butyryt] benzoylamino} propionic acid

'H NMR (DMSO-d6) : #=1. 15-1.40 (8H, m), 1.50-1. 80 (12H, m), 2.42 (1H, m), 3.46 (2H, m), 4.99 (1H, q), 5.34 (1 H, m), 6.92 (2H, d), 7.15 (2H, d), 7.31 (2H, d), 7.82 (2H, d), 7.89 (2H, d), 8.12 (2H, d), 8.66 (1H, t); HPLC-MS (Method C): m/z = 595 (M+1); Rt = 6.70 min.

Example 29 (General procedure (B)) 3-{4-[2-(4-Cyclohexylphenyl)-4-oxo-4-(4-phenoxyphenyl)butyry l]benzoylamino}propionic acid

'H NMR (DMSO-d6) : 51. 15-1.40 (5H, m), 1.60-1. 80 (5H, m), 3.46 (2H, q), 4.06 (1 H, m), 5.38 (1H, m), 7.02 (2H, d), 7.13 (4H, dd), 7.32 (3H, m), 7.48 (2H, dd), 7.88 (3H, dd), 8.02 (2H, d), 8.12 (2H, d), 8.66 (1 H, t), 12.25 (1 H, bs) ; HPLC-MS (Method C): m/z = 604 (M+1); Rt = 8.13 min.

Example 30 (General procedure (B)) <BR> <BR> 3- {4- [4- (4-Cyclohexylphenyl)-4-oxo-2- (4-trifluoromethoxyphenyl) butyryl] benzoylamino}- propionic acid

'H NMR (CDCI3) : 81. 20-1.50 (5H, m), 1.70-1. 90 (5H, m), 2.55 (1H, m), 2.70 (2H, t), 3.32 (1H, dd), 3.72 (2H, q), 4.15 (2H, dd), 5.30 (1H, dd), 6.83 (1H, t),-7. 14 (2H, d), 7.28 (2H, d), 7.36 (2H, d), 7.79 (2H, d); 7.90 (2H, d), 8.06 (2H, d); HPLC-MS (Method A): m/z = 596 (M+1); Rt = 5.68 min.

Example 31 (General procedure (B)) 3-{4-[4-Biphenyl-4-yl-4-oxo-2-(4-trifluoromethoxyphenyl)buty ryl]benzoylamino}propionic acid 'H NMR (CDCI3) : a 2.70 (2H, t), 3.38 (1 H, dd), 3.73 (2H, q), 4.24 (2H, dd), 5.35 (1 H, dd), 6.85 (1 H, t), 7.16 (2H, d), 7.28 (2H, d), 7.35-7. 50 (5H, m), 7.61 (2H, d); 7.67 (2H, d), 7.80 (2H, d), 8.03 (2H, d), 8.07, (2H, d); HPLC-MS (Method A): m/z = 590 (M+1); R, = 5.03 min.

Example 32 (General procedure (B)) <BR> <BR> 3- {4- [4- (4-Cyclohexylphenyl)-2- (3, 5-dichlorophenyl)-4-oxobutyryl] benzoylamino} propionic acid

'H NMR (CDCl3) : # 1.15-1. 50 (5H, m), 1.70-1. 95 (5H, m), 2.57 (1H, m), 2.70 (2H, t), 3.30 (1H, dd), 3.73 (1H, q), 4.13 (1H, dd), 5.23 (1H, dd), 6.90 (1H, t), 7.24 (3H, s); 7.29 (2H, d), 7.80 (2H, d), 7.88 (2H, d), 8.03, (2H, d).

Example 33 (General procedure (B)) 3-{4-[2-(3-Bqromophenyl)-4-(4-cyclohexylphenyl)-4-oxobutylry l]benzoylamino}propionic acid 'H NMR (CDCl3) : 15 1.17-1. 50 (5H, m), 1.70-1. 92 (5H, m), 2.55 (1H, m), 2.69 (2H, t), 3.29 (1 H, dd), 3.70 (1H, q), 4.15 (1H, dd), 5.24 (1H, dd), 6.97 (1 H, t), 7.15 (1 H, t), 7.20-7. 30 (3H, m); 7.35 (1H, d), 7.49 (1H, s), 7.76 (2H, d), 7.88, (2H, d), 8.02 (2H, d).

Example 34 (General procedure (B)) 3- {4- [4-Benzo [1, 3] dioxol-5-yl-2- (4-cyclohexylphenyl)-4-oxobutyryl] benzoylamino} propionic acid

'H NMR (CDCI3) : 61. 20-1.48 (m, 5H), 1.66-1. 87 (m, 5H), 2.47 (m, 1H), 2.64 (t, 2H), 3.65 (q, 2H), 5.20 (dd, 2H), 6.02 (s, 2H), 6.81 (d, 1H), 6.99 (t, 1H), 7.12 (m, 1H), 7.23 (d, 2H), 7.38 (s, 1H), 7.46 (d, 2H), 7.62 (d, 1H), 7.73 (d, 2H), 8.02 (d, 2H); HPLC-MS (Method A): m/z= 556 (M+1) ; Rt = 5. 11 min.

General procedure (C) General procedure (C) for solid phase synthesis of compounds of the general formula (14) : 0 o HO-jt- H Fmoc HOX H H Resin. H ResimO m H-Fmoc Step 1 Step2 OD O E O E a H Resir-C)-Ir y Step 3 Resin-0-D 'O 0 Step 3 O E 'L'-In N _, _H Step 4 Ra O O Step 5 R4 O O O. D <'4) (E) + (Z) O O qz 0 O HO m n HX Step 6 R4 E (1,) (Z)

wherein X, D, E, m, n and R4 are as defined for formula (I), and Resin is a polystyrene resin loaded with a Wang-linker.

The procedure is illustrated in the following example.

Example 35 (General procedure (C)) (Z)-3- {4- [2- (4-Cyclohexylphenyl)-4-oxo-4- (4-trifluoromethoxyphenyl) but-2-enoyl] benzoyl- amino} propionic acid

Step 1-Step 3 : Preparation of resin bound 3-{4-[2-(4-cyclohexylphenyl)-4-oxo-4-(4-trifluoro- methoxyphenyl) butvryllbenzovlaminoTproPionic acid The compound was synthesized according to general procedure (B).

Step 4 and Step 5: Preparation of 3-f4-f2- (4-cvclohexvlphenyl)-4-oxo-4- (4-trifluoromethoxv- phenyl) but-2-enovllbenzovlaminopropionic acid The above resin bound 3- {4- [2- (4-cyclohexylphenyl)-4-oxo-4- (4-trifluoromethoxyphenyl)- butyryl] benzoylamino} propionic acid (500 mg resin) was suspended in THF (10 mL), and io- dine crystals (344 mg, 1.35 mmol) and DBU (225 ul) were added. The suspension was shaken at room temperature for 3.5 hours. The resin was isolated by filtration and washed with THF (1 x 10 mL), sodium pyrosulfite solution (2% in water) (1 x 10 mL), THF (2 x 10 mL), DCM (10 x 10 mL). The resin bound 3- {4- [2- (4-cyclohexylphenyl)-4-oxo-4- (4- trifluoromethoxyphenylbut-2-enoyl] benzoylamino} propionic acid was treated with 50% TFA in DCM (10 mL) for 0.5 hour at 25 °C. The mixture was filtered and the resin was washed with DCM (10 mL). The combined filtrates were concentrated in vacuo to afford an oil which was purified on silical gel column eluted with DCM/methanol/acetic acid (95: 4: 1) to afford an E and Z mixture of 3-{4-[2-(4-cyclohexylphenyl)-4-oxo-4-(4-trifluoromethoxyphen yl) but-2- enoyl] benzoylamino} propionic acid.

'H NMR (CDCI3) : E8. 03-7.92 (m, 3H), 7.88-7. 77 (m, 3H), 7.58-7. 47 (m, 1H), 7.15 (t, 3H), 7.01 (d, 1 H) ; 6.90-6. 80 (m, 2H), 3.73 (q, 2H), 2.72 (t, 2H), 2.37 (m, 1H), 1.78-1. 66 (m, 5H), 1.42-1. 23 (m, 5H); HPLC-MS (Method A) : m/z = 594 (M+1) ; Rt = 5.44 min.

Step 6: Preparation of (Z)-3-{4-[2-(4-cyclohexylphenyl)-4-oxo-4-(4-trifluoromethoxy phenyl)- but-2-enovllbenzovlaminopropionic acid The rearrangement of the End Z mixture to the Z-isomer was done by a modified literature procedure (J. Am. Chem. Soc. , 75, 5997-6002,1953).

The E and Z mixture of 3- {4- [2- (4-cyclohexylphenyl)-4-oxo-4- (4-trifluoromethoxyphenyl) but-2- enoyl] benzoylamino} propionic acid (155 mg, 0.26 mmol) was dissolved in toluene (15 mL) and concentrated HCI (37%, 3 drops) was added and the mixture was heated to reflux for 1 hour. The solvent was removed by evaporation to give the pure Z isomer of 3- {4- [2- (4-cyclo- hexylphenyl)-4-oxo-4- (4-trifluoromethoxyphenyl) but-2-enoyl] benzoylamino} propionic acid.

'H NMR (CDC13) : 58. 03 (d, 4H), 7.79 (d, 2H), 7.57 (s, 1H), 7.48 (d, 2H), 7.30 (d, 2H); 7.24 (d, 2H), 6.84 (t, 1H), 3.71 (q, 2H), 2.70 (t, 2H), 2.52 (m, 1H), 1.90-1. 70 (m, 5H), 1.45-1. 17 (m, 5H); HPLC-MS (Method A): m/z = 594 (M+1); Rt = 5.37 min.

Microanalysis : Calculated for C33H30F3NO6, 0.25 H20: C, 66. 27% ; H, 5.14% ; N, 2.34%. Found: C, 66.33% ; H, 5.20% ; N, 2.57%.

Example 36 (General procedure (C) ) (Z)-3- {4- [2- (4-Cyciohexylphenyl)-4-oxo-4- (2, 2, 3, 3-tetrafluoro-2, 3-dihydrobenzo [1,4] dioxin-6- yl) but-2-enoyl]@enzoylamino}propionic acid

Data for the E and Z mixture resulting from Step 5 in general procedure (C): 'H NMR (CDCI3) : 68. 01-7.92 (m, 2H), 7.83-7. 45 (m, 6H), 7.26-7. 00 (m, 3H), 6.84 (br t, 1 H), 3. 71 (q, 2H), 2.70 (q, 2H), 2.52 (m, 1H), 1.88-1. 67 (m, 5H), 1.45-1. 17 (m, 5H).

Data for title compound: 'H NMR (CDC13) : #7. 98 (brd, 2H), 7.88-7. 70 (m, 4H), 7.50 (t, 3H), 7.18 (d, 1H), 6.84 (br s, 1H), 3.71 (br s, 2H), 2.70 (br s, 2H), 2.52 (m, 1 H), 1.90-1. 70 (m, 5H), 1.45-1. 15 (m, 5H).

Example 37 (General procedure (C)) (Z)-3- {4- [4- (3, 5-Bistrifluoromethylphenyl)-2- (4-cyclohexylphenyl)-4-oxobut-2-enoyl] benzoyl- amino} propionic acid

'H NMR (CDC13) : #8. 40 (s, 2H), 8.07, (s, 1H), 8.00 (d, 2H), 7.81 (d, 2H), 7.58 (s, 1H), 7.52 (d, 2H), 7.29 (d, 2H), 6.93 (br s, 1 H), 3.72 (q, 2H), 2.69 (t, 2H), 2.52 (m, 1 H), 1.90-1. 72 (m, 5H), 1.48-1. 25 (m, 5H).

Example 38 (General procedure (C)) (Z)-3- {4- [4- (3, 5-Bis (trifluoromethyl)phenyl)-2-[2,2']bithiophenyl-5-yl-4-oxobut- 2-enoyl]- benzoylamino} propionic acid

'H NMR (CDCl3) : 58. 38 (s, 2H), 8. 07, (s, 1H), 8.05 (d, 2H), 7.85 (d, 2H), 7.38-7. 32 (m, 2H), 7.18 (d, 2H), 7.12-7. 05 (m, 2H), 6.84 (brt, 1H), 3.74 (q, 2H), 2.70 (t, 2H).

Example 39 (General procedure (C)) (Z)-3- {4- [2- (4-Bromothiophen-2-yl)-4-oxo-4- (4-trifluoromethoxyphenyi) but-2-enoyl] benzoyl- amino} propionic acid

'H NMR (CDCI3) : 58. 03 (d, 2H), 7. 99, (d, 2H), 7.84 (d, 3H), 7.47 (s, 1H), 7.38 (s, 1H), 7.31 (s, 1 H), 7.02 (s, 1 H), 6.84 (m, 1H), 3.74 (q, 2H), 2.72 (t, 2H).

Example 40 (General procedure (C)) <BR> <BR> (Z)-3- {4- [2- (4-Cyclohexylphenyl)-4-oxo-4- (3-trifluoromethoxyphenyl) but-2-enoyl] benzoyl- amino} propionic acid

'H NMR (CDCI3) : 58. 01 (d, 2H), 7. 90, (d, 1H), 7.80 (d and s, 3H), 7.58-7. 38 (m, 5H), 7.22 (s, 1 H), 7.28 (d, 1 H), 6. 82 tbr s, 1 H), 3.74 (br s, 2H), 2.70 (br s, 2H), 2.53 (br m, 1 H), 1.90-1. 70 (m, 5H), 1.47-1. 20 (m, 5H) Example 41 (General procedure (C)) (Z)-3-{4-[2-(4-Cyclohexylphenyl)-4-oxo-4-(4-trifluoromethyls ulfanylphenyl)but-2-enoyl]- benzoylamino} propionic acid 'H NMR (CDCI3) : 58. 02 (d, 2H), 7. 98, (d, 2H), 7.80 (d, 2H), 7.73 (d, 2H), 7.58 (s, 1 H), 7.49 (d, 2H), 7.26 (d, 2H), 6.78 (br t, 1 H), 3.73 (q, 2H), 2.72 (t, 2H), 2.53 (br m, 1 H), 1.90-1. 70 (m, 5H), 1.46-1. 25 (m, 5H); HPLC-MS (Method B): m/z= 610 (M+1) ; Rt = 5.63 min.

Example 42 (General procedure (C) (Z)-3-{4-[4-Biphenyl-4-yl-2-(4-cyclohexylphenyl)-4-oxobut-2- enoyl]benzoylamino}propionic acid

'H NMR (DMSO-d6) : #1. 20-1.45 (5H, m), 1.65-1. 85 (5H, m) j 2.48 (below DMSO-signal), 3.45 (2H, q), 7.33 (2H, d), 7.45 (1 H, d), 7.51 (2H, d), 7.61 (2H, d), 7.77 (2H, d), 7.87 (4H, dd), 7.95 (1 H, d), 8.22 (2H, d), 8.66 (1 H, t), 12.20 (1 H, bs); HPLC-MS (Method C): m/z = 586 (M+1); R, = 8.03 min.

Example 43 (General procedure (C) (Z)-3- {4- [4- (2-Chlorophenyl)-2- (4-cyclohexylphenyl)-4-oxobut-2-enoyl] benzoylamino}- propionic acid

'H NMR (DMSO-d6) : #1. 15-1.42 (5H, m), 1.65-1. 80 (5H, m), 3.46 (2H, q), 7.31 (2H, d), 7.48 (1H, d), 7.52 (2H, d), 7.59 (2H, d), 7.68 (1 H, d), 7.91 (2H, d), 7.98 (2H, d), 8.69 (1H, t), 12.23 (1H, bs); HPLC-MS (Method C): m/z = 544 (M+1); Rt = 7.33 min.

Example 44 (General procedure (C) <BR> <BR> (Z)-3- {4- [2- (4-Cyclohexylphenyl)-4-oxo-4- (2-trifluoromethylphenyl) but-2-enoyl] benzoylamino)- propionic acid

'H NMR (DMSO-d6) : #1. 15-1.45 (5H, m), 1.60-1. 85 (5H, m), 3.47 (2H, q), 7.31 (2H, d), 7.55 (3H, m), 7.74 (1H, d), 7.85 (2H, d), 7.90-8. 05 (4H, dd), 8.70 (1H, t), 12.23 (1H, bs); HPLC-MS (Method C): m/z = 578 (M+1) ; Rt = 7.43 min.

Example 45 (General procedure (C) (Z)-3- {4- [4- (4-tert-Butylphenyl)-2- (4-cyclohexylphenyl)-4-oxobut-2-enoyl] benzoylamino}- propionic acid 'H NMR (DMSO-d6) : #1. 20-1.45 (5H, m), 1.31 (9H, s), 1.65-1. 85 (5H, m), 3.46 (2H, q), 7.32 (2H, d), 7.57 (4H, m), 7.88 (2H, d), 7.92 (2H, d), 8.05 (2H, m), 8.65 (1 H, t), 12.23 (1 H, bs) ; HPLC-MS (Method C): m/z = 566 (M+1); Rt = 8.17 min.

Example 46 (General procedure (C) (Z)-3-{4-(2-(4-Cyclohexylphenyl)-4-oxo-4-(4-phenoxyphenyl)bu t-2-enoyl]benzoylamino}- propionic acid

'H NMR (DMSO-d6) : 61. 15-1.50 (5H, m), 1.65-1. 90 (5H, m), 3.46 (2H, q), 7.05 (2H, d), 7.16 (2H, d), 7.31 (3H, m), 7.47 (2H, d), 7.59 (2H, d), 7.85-8. 00 (4H, m), 8.17 (2H, d), 8.66 (1 H, t), 12.25 (1H, bs); HPLC-MS (Method C): m/z = 602 (M+1); Rt = 7.90 min.

Example 47 (General procedure (C)) (Z)-3- {4- [2- (4-tert-Butyllphenyl)-4-oxo-4- (4-trifluoromethoxyphenyl) but-2-enoyl] benzoyl- amino} propionic acid 'H NMR (DMSO-d6,) : 68. 70 (t, 1H), 8.26 (d, 2H), 8.0-7. 9 (m, 5H), 7.61 (d, 2H), 7.5 (m, 3H), 1.28 (s, 9H) ; HPLC-MS (Method A): m/z= 568 (M+1) ; Rt = 5.21 min.

Example 48 (General procedure (C)) (Z)-3-{4-[4-Oxo-2-(4-phenoxyphenyl)-4-(4-trifluoromethoxyphe nyl)but-2-enoyl]benzoylamino}- propionic acid

HPLC-MS (Method A): m/z = 604 (M+1); Rt = 5.07 min.

Example 49 (General procedure (C)) (Z)-3- {4- [4-Oxo-2- (3-phenoxyphenyl)-4- (4-trifluoromethoxyphenyl) but-2-enoyl] benzoylamino}- propionic acid

'H NMR (CD30D) : d8. 16 (d, 2H), 7.98 (d, 2H), 7.86 (m, 3H), 7.4 (m, 4H), 7.34 (m, 2H), 7.25 (s, 1H), 7.15-7. 05 (m, 2H), 6.94 (d, 2H), 3.65 (m, 2H), 2.65 (m, 2H); HPLC-MS (Method A): m/z = 604 (M+1); Rt = 5.06 min.

Example 50 (General procedure (C)) <BR> (Z)-3- {4- [2- (4-Benzyloxyphenyl)-4-oxo-4- (4-trifluoromethoxyphenyl) but-2-enoyl] benzoyl- amino} propionic acid

HPLC-MS (Method A): m/z = 618 (M+1); Rt = 5.00 min.

Example 51 (General procedure (C)) (Z)-3-{4-[4-Oxo-2,4-bis-(4-trifluoromethyoxyphenyl)but-2-eno yl]benzoylamino}propionic acid

'H NMR (CD30D) : 58. 18 (d, 2H), 8.00 (d, 2H), 7.93 (s, 1H), 7.85 (d, 2H), 7.79 (d, 2H), 7.42 (d, 2H), 7.36 (d, 2H), 3.62 (t, 2H), 2.63 (t, 2H); HPLC-MS (Method A): m/z = 596 (M+1); R, = 4.90 min.

Example 52 (General procedure (C)) <BR> <BR> (Z)-3- {4- [2- (4-Cyclohexylphenyl)-4- (3, 4-difluorophenyl)-4-oxobut-2-enoyl] benzoylamino}- propionic acid

HPLC-MS (Method A): m/z = 546 (M+1); Rt = 5.25 min.

Example 53 (General procedure (C)) (Z)-3- {4- [2-Biphenyl-4-yl-4-oxo-4- (4-trifluoromethoxyphenyl) but-2-enoyl] benzoylamino}- propionic acid

'H NMR (DMSO-d6,) : 812. 2 (bs, 1H), 8.69 (t, 1H), 8.30 (d, 2H), 8.15 (s, 1H), 7.99 (d, 2H), 7.90 (d, 2H), 7.73 (d, 2H), 7.4-7. 55 (m, 8H), 3.46 (m, 2H); HPLC-MS (Method A): m/z = 588 (M+1); Rt = 5.08 min.

Example 54 (General procedure (C)) (Z)-3-{4-[2-Biphenyl-4-yl-4-oxo-4-(2, 2,3, 3-tetrafluoro-2, 3-dihydrobenzo [1,4] dioxin-6-yl) but-2- enoyl] benzoylamino} propionic acid

'H NMR (CDCl3) : #8.00 (d, 2H), 7.85-7. 75 (m, 3H), 7.63-7. 35 (m, 10H), 7.23 (d, 1H), 7.18 (d, 1 H), 6.88 (t, 1H), 3.71 (q, 2H); 2.70 (t, 2H); HPLC-MS (Method A): m/z= 634 (M+1) ; Rt = 5.07 min.

Example 55 (General procedure (C)) (Z)-3- 4- [4- (4-Cyclohexylphenyl)-4-oxo-2- (4-trifluoromethoxyphenyl) but-2-enoyl] benzoyl- amino} propionic acid 'H NMR (CDCI3) : #7. 99 (d, 2H), 7.90 (d, 2H), 7.79 (d, 2H), 7.62 (d, 2H), 7.30 (d, 2H), 7.23 (d, 2H), 6.82 (br t, 1 H), 3.71 (q, 2H); 2.70 (t, 2H), 2.57 (br m, 1 H), 1.90-1. 70 (m, 5H), 1.45-1. 20 (m, 5H); HPLC-MS (Method A): m/z = 594 (M+1); Rt = 5.45 min.

Example 56 (General procedure (C)) (Z) 3- {4- [4-Benzo [1, 3] dioxol-5-yl-2- (4-cyclohexylphenyl)-4-oxobut-2-enoyl] benzoylamino}- propionic acid

'H NMR (CDCI3) : #1. 10-1.45 (m, 5H), 1.67-1. 90 (m, 5H), 2.46 (m, 1H), 2.64 (t, 2H), 3.70 (q, 2H), 6.03 (s, 2H), 6.84 (br s, 1H), 7.08 (d, 2H), 7.19 (d, 2H), 7.40 (s, 1 H), 7.47 (d, 1 H), 7.56 (s, 1 H), 7.69 (d, 1 H), 7.74 (d, 2H), 8.03 (d, 2H); HPLC-MS (Method A) : m/z = 554 (M+1); Rt = 4. 95 min.

Example 57 (General procedure (C)) (Z)-3-{4-[2-(4-Cyclohexylphenyl)-4-(4-isopropylophenyl)-4-ox obut-2-enoyl]benzoylamino}- propionic acid

'H NMR (CDCI3) : 61. 14-1. 45 (m, 5H), 1.25 (d, 6H), 1.66-1. 95 (m, 5H), 2.50 (m, 1H), 2.65 (t, 2H), 2.95 (m, 1 H), 3.67 (q, 2H), 6.95 (br s, 1 H), 7.13-7. 34 (m, 4H), 7.47 (d, 2H), 7.62 (s, 1 H), 7.74 (d, 2H), 7.89 (d, 2H), 7.97 (d, 2H); HPLC-MS (Method A): m/z = 552 (M+1); Rt = 5.82 min.

Example 58 (General procedure (C)) (Z)-3-{4-[2,4-Bis-(4-cyclohexylphenyl)-4-oxobut-2-enoyl]benz oylamino}propionic acid

'H NMR (CDCI3) :. 08-1. 50 (m, 10H), 1.67-1. 95 (m, 10H), 2.54 (m, 2H), 2.65 (t, 2H), 3.67 (q, 2H), 7.00 (brs, 1H), 7.12-7. 34 (m, 4H), 7.47 (d, 2H), 7.63 (s, 1H), 7.75 (d, 2H), 7.89 (d, 2H), 7.98 (d, 2H) ; HPLC-MS (Method A): m/z= 592 (M+1); Rt = 6.13 min.

Example 59 (General procedure (C) ) (Z)-3-{4-[2-(4-Cyclohexylphenyl)-4-(4-dichlorophenyl)-4-oxob ut-2-enoyl]benzoylamino}- propionic acid

'H NMR (CDCl3) : 61. 18-1.48 (m, 5H), 1.65-1. 94 (m, 5H), 2.50 (m, 1 H), 2.66 (t, 2H), 3.67 (q, 2H), 6.94 (br s, 1 H), 7.15 (d, 2H), 7.22 (d, 2H), 7.49 (m, 3H), 7.86 (m, 3H), 7.94 (d, 2H); HPLC-MS (Method A): m/z = 578 (M+1); Rt = 5.60 min.

Example 60 (General procedure (C)) <BR> <BR> (Z)-3-f4- [4- (4-Isobutylphenyl)-4-oxo-2- (4-trifluoromethoxyphenyl) but-2-enoyl] benzoylamino}- propionic acid

'H NMR (CDCI3) : 50. 90 (d, 6H), 1.88 (m, 1 H), 2.54 (d, 2H), 2.69 (t, 2H), 3.70 (q, 2H), 6.86 (br s, 1 H), 7.24 (m, 4H), 7.62 (m, 3H), 7.78 (d, 2H), 7.87 (d, 2H), 7.99 (d, 2H); HPLC-MS (Method A): m/z = 568 (M+1); Rt = 6.03 min.

Example 61 (General procedure (C)) (Z)-3- {4- [4- (4-Cyclopentylphenyl)-4-oxo-2- (4-trifluoromethoxyphenyl) but-2-enoyl] benzoyl- amino}propionic acid

'H NMR (CDCI3) : 61. 48-1.89 (m, 6H), 1.99-2. 15 (m, 2H), 2.69 (t, 2H), 3.04 (m, 1H), 3.70 (q, 2H), 6.90 (br s, 1 H), 7.20 (d, 2H), 7.32 (d, 2H), 7.62 (m, 3H), 7.79 (d, 2H), 7.88 (d, 2H), 7.99 (d, 2H) ; HPLC-MS (Method A): m/z= 580 (M+1) ; Rt = 5.08 min.

Example 62 (General procedure (C)) (Z)-3- {4- [4-Oxo-4-phenyl-2- (4-trifluoromethoxyphenyl) but-2-enoyl] benzoylamino} propionic acid

'H NMR (CDCI3) : a 2.71 (t, 2H), 3.73 (q, 2H), 6.87 (br s, 1 H), 7.15 (d, 2H), 7.23 (d, 2H), 7.47 (d, 2H), 7. 64 (m, 3H), 7.83 (d, 2H), 8.00 (m, 3H); HPLC-MS (Method A): m/z= 512 (M+1); Rt = 5.09 min.

Example 63 (General procedure (C)) (Z)-3- {4- [4-Oxo-4-p-tolyl-2- (4-trifluoromethoxyphenyl) but-2-enoyl] benzoylamino} propionic acid 'H NMR (CDCl3) : 9 2. 44 (s, 3H), 2.69 (t, 2H), 3.74 (q, 2H), 6.96 (br s, 1 H), 7.16 (d, 2H), 7.25 (d, 2H), 7.63 (m, 3H), 7.79 (d, 2H), 7.88 (d, 2H), 8.00 (d, 2H); HPLC-MS (Method A): m/z = 526 (M+1); Rt = 5.26 min.

Example 64 (General procedure (C)) <BR> <BR> (Z)-3- {4- [4- (4-Methoxyphenyl)-4-oxo-2- (4-trifluoromethoxyphenyl) but-2-enoyl] benzoylamino)- propionic acid

'H NMR (CDC13) : 82. 70 (t, 2H), 3.73 (q, 2H), 3.88 (s, 3H), 6.96 (brs, 1H), 7.16 (d, 2H), 7.24 (d, 2H), 7.65 (m, 3H), 7.80 (d, 2H), 8.00 (m, 4H); HPLC-MS (Method A): m/z = 542 (M+1); Rt = 5.09 min.

Example 65 (General procedure (C)) (Z)-3- {4- [2- [4- (2, 2-Dimethylpropyl) phenyl]-4-oxo-4- (4-trifluoromethoxyphenyl) but-2-enoyl]- benzoylamino} propionic acid 'H NMR (CDCI3) : # 0. 88 (s, 9H), 2.51 (s, 2H), 2.68 (t, 2H), 3.70 (q, 2H), 6.99 (brs, 1H), 7.15 (d, 2H), 7.27 (d, 2H), 7.47 (d, 2H), 7.60 (s, 1 H), 7.78 (d, 2H), 8.00 (m, 4 H); HPLC-MS (Method D): m/z = 582 (M+1); Rt = 5.21 min.

Example 66 (General procedure (C)) <BR> <BR> (Z)-3- {4- [2-Indan-5-yl-4-oxo-4- (4-trifluoromethoxyphenyl) but-2-enoyl] benzoylamino} propionic acid

'H NMR (CDCI3) : 52. 01 (m, 2H), 2.64 (t, 2H), 2.84 (m, 4H), 3.64 (q, 2H), 6.81 (br s, 1H), 7.14 (d, 1 H), 7.22 (d, 2H), 7.27 (d, 1 H), 7.35 (s, 1H), 7.53 (s, 1H), 7.71 (d, 2H), 7.94 (m, 4H); HPLC-MS (Method A) : m/z = 552 (M+1) ; Rt = 4.75 min.

Example 67 (General procedure (C)) (Z)-3-{4-[2,4-Biphneyl-4-yl-4-(4-chlorphenyl)-4-oxobut-2-eno yl]benzoylamino}propionic acid

'H NMR (CDCI3) : 52. 74 (t, 2H), 3.73 (q, 2H), 6.77 (br s, 1 H), 7.44 (m, 6H), 7.54 (s, 1 H), 7.61 (d, 2H), 7.65 (m, 3H), 7.84 (d, 2H), 7.95 (d, 2H), 8.05 (d, 2H); HPLC-MS (Method A): m/z= 552 (M+1) ; Rt = 4.75 min.

Example 68 (General procedure (C)) (Z)-3- [4- (2-Biphenyl-4-yl-4-naphthalen-2-yl-4-oxobut-2-enoyl) benzoylamino] propionic acid

'H NMR (CDCI3) : # 2.70 (t, 2H), 3.72 (q, 2H), 6.80 (br s, 1H), 7.38 (m, 1H), 7.45 (d, 2H), 7.57 (m, 2H), 7.62 (m, 2H), 7.67 (m, 3H), 7.74 (m, 1H), 7.83 (d, 2H), 7.91 (m, 1H), 7.92 (d, 2H), 7.99 (m, 2H), 8.10 (d, 2H), 8.56 (m, 1H) ; HPLC-MS (Method A): m/z = 554 (M+1); Rt = 4.71 min.

Example 69 (General procedure (C)) (Z)-3- {4- [4- (4-Cyclohexylphenyl)-2- (4-isopropylphenyl)-4-oxobut-2-enoyl] benzoylamino}- propionic acid

'H NMR (CDC13) : 91. 24 (d, 6H), 1.24-1. 50 (m, 5H), 1.68-1. 95 (m, 5H), 2.57 (m, 1H), 2.70 (t, 2H), 2.93 (m, 1 H), 3.70 (q, 2H), 6.85 (br s, 1 H), 7.20 (d, 2H), 7.29 (d, 2H), 7.50 (d, 2H), 7.64 (s, 1 H), 7.77 (d, 2H), 7.90 (d, 2H), 8.01 (d, 2H); HPLC-MS (Method A): milz = 552 (M+1); Rt = 5.84 min.

Example 70 (General procedure (C)) <BR> (Z)-3- {4- [4-Oxo-2- (4-trifluoromethoxyphenyl)-4- (4-trifluoromethylsulfanylphenyl) but-2-enoyl]- benzoylamino} propionic acid

HPLC-MS (Method A) m/z = 612 (M+1) ; Rt = 4.94 min.

Example 71 (General procedure (C)) (Z)-3-{4-[4-Oxo-2,4-bis-trifluoromethoxyphenyl)but-2-neoyl]b enzoylamino}propionic acid

'H NMR (DMSO-d6) : 32. 5 (2H, below DMSO-d6), 3.47 (2H, q), 7.50 (2H, d), 7.54 (2H, d), 7.85 (2H, d), 7.89 (2H, d), 7.97 (2H, d), 8.10 (1H, s), 8.28 (2H, d), 8.68 (1H, t). HPLC-MS (Method A): m/z = 596 (M+1) ; R, = 4.97 min.

Example 72 (General procedure (C)) (Z)-3- {4- [4-Oxo-4- (3-trifluoromethoxyphenyl)-2- (4-trifluoromethoxyphenyl) but-2-enoyl]- benzoylamino} propionic acid

HPLC-MS (Method A) : m/z = 596 (M+1) ; Rt = 4.73 min.

Example 73 (General procedure (C)) (Z)-3- {4- [2-Biphenyl-4-yl-4- (4-cyclohexylphenyl)-4-oxobut-2-enoyl] benzoylamino} propionic acid

HPLC-MS (Method A): m/z = 588 (M+1); Rt = 5.83 min.

Example 74 (General procedure (C)) (Z)-3- {4- [2-Biphenyl-4-yl-4-oxo-4- (4-trifluoromethoxyphenyl) but-2-enoyl] benzoylamino}- propionic acid

'H NMR (DMSO-de,) : 32. 5 (2H, below DMSO-d6), 3.46 (2H, q), 7.73 (2H, d), 7.90 (2H, d), 7.99 (2H, d), 8.16 (1 H, s), 8.30 (2H, d), 8.70 (1 H, t), 12.1 (1 H, bs). HPLC-MS (Method A): m/z = 588 (M+1); Rt = 5.08 min.

Example 75 (General procedure (C)) <BR> <BR> (Z)- (3- {4- [4-Biphenyl-4-yl-4-oxo-2- (4-trifluoromethoxyphenyl) but-2-enoyl] benzoylamino)- propionic acid

'H NMR (CDCI3) : 52. 70 (2H, t), 3.72 (2H, q), 6.84 (1H, t), 7.40-7. 50 (3H, m), 7.59-7. 73 (8H, m), 7.81 (2H, d), 8.00-8. 08 (4H, dd). HPLC-MS (Method A): m/z = 588 (M+1); Rt = 4.86 min.

Example 76 (Z)-3- {4- [2- (4-Cyclohex-1-enylphenyl)-4-oxo-4- (4-trifluoromethoxyphenyl) but-2-enoyl]- benzoylamino} propionic acid

This compound was prepared according to general procedure (B), with the modification (step 3) that the resin was shaked for 3 days at 70 °C before cleavage. This afforded the oxidized product.

'H NMR (CDCI3) : 51. 60-1.74 (m, 2H), 1.75-1. 83 (m, 2H), 2.18-2. 27 (m, 2H), 2.37-2. 43 (m, 2H), 2.68-2. 75 (t, 2H), 3.68-3. 78 (q, 2H); 6.24 (t, 1 H), 6.83 (t, 1 H), 7.30 (d, 2H), 7.42 (d, 2H); 7.50 (d, 2H), 7.61 (s, 1 H) ; 7.80 (d, 2H), 8.01 (dd, 4H); HPLC-MS (Method C): m/z= 592 (M+1); Rt = 7.60 min.

Example 77 (General procedure (C)) <BR> (Z)-3- {4- [4- (4-tert-Butylphenyl)-4-oxo-2- (4-trifluoromethoxyphenyl) but-2-enoyl] benzoylamino}- propionic acid

'H NMR (CDCI3) selected : 61. 33 (s, 9H), 2.62-2. 78 (broad, 2H), 3.62-3. 79 (broad, 2H), 7.23 (broad, 1 H (below CDC13)), 7.44-7. 52 (broad, 2H), 7.56-7. 67 (broad, 4H); 7.72-7. 87 (broad, 2H), 7.88-8. 04 (broad, 4H); HPLC-MS (Method C): m/z = 568 (M+1); Rt = 5.53 min.

Example 78 (General procedure (C)) (Z)-3-{4-[4-Oxo-4-(2, 2,3, 3-tetrafluoro-2, 3-dihydrobenzo [1,4] dioxin-6-yl)-2- (4-trifluoromethoxy- phenyl) but-2-enoyl] benzoylamino} propionic acid 'H NMR (CDCI3) selected : 6 2. 62-2.77 (broad, 2H), 3.62-3. 78 (broad, 2H), 7.86-7. 98 (broad, 1 H), 7.24 (broad, 2H (below CDC13)), 7.50-7. 58 (broad, 1 H), 7.58-7. 68 (broad, 2H); 7. 73-7. 89 (broad, 4H), 7.94-8. 04 (broad, 2H); HPLC-MS (Method C): m/z = 642 (M+1); R, = 5.53 min.

Example 79 (General procedure (C)) <BR> <BR> (Z)-3- {4- [4- (4-Chlorophenyl)-2- (4-cyclohexylphenyl)-4-oxobut-2-enoyl] benzoylamino}- propionic acid

'H NMR (DMSO-d6) : #-1. 15-1.46 (m, 5H), 1.65-1. 83 (m, 5H), 2.50 (m, 3H (below DMSO) ), 3.42-3. 50 (q, 2H); 7.30-7. 35 (d, 2H), 7.55-7. 72 (dd, 4H), 7.85-8. 05 (m, 5H), 8.10-8. 20 (d, 2H); 8.66 (t, 1 H), 12.23 (s, 1 H) ; HPLC-MS (Method C): m/z = 544 (M+1); Rt = 5.87 min.

Example 80 (General procedure (C)) (Z)-3-{4-[2-(4-cyclohexylphenyl)-4-oxo-4-(5,6,7,8-tetrahydro naphthalen-2-yl0-but-2-enoyl]- benzoylamino} propionic acid 'H NMR (CDC13) : 51. 10-1.42 (m, 5H), 1.60-1. 88 (m, 9H), 2.29-2. 43 (m, 1H), 2.61-2. 83 (m, 6H), 3.62-3. 79 (q, 2H), 6.86 (s, 1 H), 6.97-7. 11 (m, 4H) ; 7.13-7. 24 (d, 2H), 7.50-7. 62 (m, 2H), 7.75-7. 86 (d, 2H), 7.92-8. 04 (d, 2H); HPLC-MS (Method C): m/z= 564 (M+1) ; Rt = 6.20 min.

Example 81 (General procedure (C)) (Z)-3- {4- [4-Oxo-4- (5, 6,7, 8-tetrahydronaphthalen-2-yl)-2- (4-trifluoromethoxyphenyl) but-2- enoyl] benzoylamino} propionic acid

'H NMR (DMSO-d6) : 61. 72-1.81 (m, 4H), 2.51 (m, 2H (below DMSO) ), 2.74-2. 84 (m, 4H), 3.42-3. 50 (q, 2H), 7. 20-7. 26 (d, 1H), 7.45-7. 52 (d, 2H), 7.78-7. 98 (m, 8H), 8.05 (s, 1H) ; 8.66 (t, 1 H), 12.22 (s, 1 H) ; HPLC-MS (Method C): m/z = 566 (M+1) ; Rt = 5.47 min.

Example 82 (General procedure (C)) (Z)-3-{4-[2-(4-Chlorophenyl)-4-(4-cyclohexylphenyl)-4-oxobut -2-enoyl]benzoylamino}- propionic acid

'H NMR (DMSO-d6) : F1. 22-1.53 (m, 5H), 1.68-1. 87 (m, 5H), 2.51 (t, 2H (below DMSO)), 3.41-3. 52 (q, 2H), 7.36-7. 43 (d, 2H), 7.52-7. 58 (d, 2H); 7.68-7. 75 (d, 2H), 7.85-7. 97 (dd, 4H), 8.02-8. 08 (m, 3H), 8.62-8. 71 (t, 1H), 12.22 (s, 1H) ; HPLC-MS (Method C): m/z= 544 (M+1); Rt = 5.83 min.

Example 83 (General procedure (C)) (Z)-3- {4- [4- (4-Chlorophenyl)-4-oxo-2-p-tolylbut-2-enoyl] benzoylamino} propionic acid

'H NMR (DMSO-d6) : a 2.33 (3H, s), 2.5 (below DMSO), 3.44 (2H, q), 7.29 (2H, d), 7.61 (4H, m), 7.90 (4H, dd), 8.01 (1H, s), 8.15 (2H, d), 8.66 (1H, t), 12.2 (1H, bs). HPLC-MS (Method D): m/z = 476 (M+1) ; Rt = 4.11 min.

Example 84 (General procedure (C)) (Z)-3-{4-[2,4-Bis-(4-chlorophenyl)-4-oxobut-2-enoyl]benzoyla mino}propionic acid

'H NMR (DMSO-d6) : my 2.5 (below DMSO), 3.44 (2H, q), 7.55 (2H, d), 7.63 (2H, d), 7.91 (4H, "q"), 8.07 (1H,s), 8.15 (2H, d), 8.65 (1 H, t), 12.3 (1 H, bs). HPLC-MS (Method D): m/z= 496 (M+1); Rt = 4.20 min.

Example 85 (General procedure (C)) (Z) 3- {4- [2- (4-Cyclohexylphenyl)-4-indan-5-yl-4-oxobut-2-enoyl] benzoylamino} propionic acid

'H NMR (CDCI3) : 61. 00-1.46 (m, 5H), 1.54-1. 97 (m, 5H), 2.12 (p, 2H), 2.67 (t, 2H), 2.84 (m, 1H), 2.94 (t, 4H), 3.70 (q, 2H), 6.98 (m, 1 H), 7.13-7. 32 (m, 4H), 7.48 (d, 2H), 7.63 (s, 1H), 7.70-7. 84 (m, 3H), 8.00 (d, 2H).

HPLC-MS (Method D)-m/z = 550 (M+1); Rt = 5.35 min.

Example 86 (General procedure (C) ) (Z) 3- {4- [2- (4-Cyclohexylphenyl)-4- (4-isobutylphenyl)-4-oxobut-2-enoyl] benzoylamino}- propionic acid

15 'H NMR (CDC13) : #0. 88 (d, 6H), 1.00-1. 46 (m, 5H), 1.64-1. 96 (m, 5H), 2.44 (m, 1H), 2.53 (d, 2H), 2.67 (t, 2H), 2.86 (m, 1 H), 3.68 (q, 2H), 6.93 (m, 1 H), 7.06-7. 30 (m, 4H), 7.46 (d, 2H), 7.61 (s, 1 H), 7.68 (d, 2H), 7.86 (d, 2H), 7.98 (d, 2H), 9.98 (brs, 1H).

HPLC-MS (Method D): m/z = 566 (M+1); Rt = 5.73 min.

Example 87 (General procedure (C) ) (Z) 3- {4- [2- (4-Cyclohexylphenyl)-4- (4-cyclopentylphenyl)-4-oxobut-2-enoyl] benzoylamino}- propionic acid

'H NMR (CDCI3) : 61. 00-1.45 (m, 5H), 1.51-1. 94 (m, 11H), 1.96-2. 17 (m, 2H), 2.52 (m, 1H), 2.65 (t, 2H), 3.03 (p, 1H), 3.67 (q, 2H), 7.04 (m, 1H), 7.12-7. 35 (m, 4H), 7.46 (d, 2H), 7.60 (s, 1H), 7.76 (d, 2H), 7.87 (d, 2H), 7.99 (d, 2H).

HPLC-MS (Method D) : m/z = 578 (M+1); Rt = 5.81 min.

Example 88 (General procedure (C)) (Z) 3-{4-[2-(4-Cyclohexylphenyl)-4-oxo-4-phenylbut-2-enoyl]benzo ylamino}propionic acid

'H NMR (CDCI3) : 61. 00-1.48 (m, 5H), 1.56-1. 94 (m, 5H), 2.51 (m, 1H), 2.65 (t, 2H), 3.67 (q, 2H), 7.04 (m, 1H), 7.10-7. 27 (m, 4H), 7.37-7. 56 (m, 3H), 7.62 (s, 1H), 7.80 (d, 2H), 7.93 (d, 2H), 7.96 (d, 2H), 10.47 (br s, 1H).

HPLC-MS (Method D): m/z = 510 (M+1); Rt = 4.84 min.

Example 89 (General procedure (C)) (Z) 3-{4-[2-(4-Cyclohexylphenyl)-4-oxo-4-p-tolybut-2-enoyl]benzo ylamino}propionic acid

'H NMR (CDCI3) : 91. 01-1.47 (m, 5H), 1.59-1. 96 (m, 5H), 2.40 (s, 3H), 2.51 (m, 1H), 2.65 (t, 2H), 3.66 (q, 2H), 7.04 (m, 1H), 7.12-7. 27 (m, 4H), 7.46 (d, 2H), 7.59 (s, 1H), 7.76 (d, 2H), 7.85 (d, 2H), 7.97 (d, 2H). HPLC-MS (Method D): m/z= 524 (M+1); Rt = 5.06 min.

Example 90 (General procedure (C)) (Z) 3-{4-[2-(4-Cyclohexylphenyl)-4-(4-methoxyphenyl)-4-oxobut-2- enoyl]benzoylmamino}- propionic acid

'H NMR (CDCl3): # 1. 00-1.39 (m, 5H), 1.56-1. 96 (m, 5H), 2.51 (m, 1H), 2.67 (t, 2H), 3.70 (q, 2H), 3.85 (s, 3H), 7.03 (m, 1H), 7.13-7. 26 (m, 4H), 7.46 (d, 2H), 7.60 (s, 1H), 7.82 (d, 2H), 7.95 (d, 2H), 8.00 (d, 2H), 10.57 (br s, 1 H). HPLC-MS (Method D): m/z = 540 (M+1); Rt = 4.87 min.

Example 91 <BR> <BR> (E)-3- {4- [2- (4-Cyclohexylphenyl)-4-oxo-4- (4-trifluoromethoxyphenyl) but-2-enoyl] benzoyi- amino} propionic acid

A mixture of E and Z of 3- {4- [2- (4-cyclohexylphenyl)-4-oxo-4- (4-trifluoromethoxyphenyl) but-2- enoyl] benzoylamino} propionic acid was prepared as decribed in step 1-5 in general proce- dure (C). The mixture was separated by HPLC (chiralcel OD, 25x 2 cm, eluted with isopro- panol : heptane: trilfluoroacetic acid (20: 80: 0.1), 6 mUmin) to give the pure E-isomer.

'H NMR (CDCI3) : a 1.66-2. 05 (m, 5H), 2.41 (m, 1H), 2.51 (m, 2H), 3.47 (q, 2H), 7.12 (d, 4H), 7.44 (d, 2H), 7.96-8. 01 (m, 6H), 8.72 (t, 1H).

General procedure (D) General procedure (D) for solution phase synthesis of compounds of the general formulae (13) :

The procedure is illustrated in the following example : Example 92 (General procedure (D)) 4- [2-Biphenyl-4-yl-4-oxo-4- (3-trifluoromethylphenyl) butyryl]-N- (2H-tetrazol-5-yl) benzamide

4-Formyl-N- (2H-tetrazol-5-yl) benzamide (128 mg) (synthesized according to the procedure described in WO 00169810), 3-biphenyl-4-yl-1- (3-trifluoromethylphenyl) propenone (223 mg) and 3, 4-dimethyl-5- (2-hydroxyethyl) thiazoliumiodide (89 mg) were dissolved in dry DMF (2.2 mL). Triethylamine (0.180 mL) was added and the mixture was stirred at 70 °C for 3 days under nitrogen. The reaction mixture was filtered through a silica gel column eluted with DCM/methanollacetic acid (90: 9: 1), and the solvent was removed by evaporation to yield an oil. The oil was washed with boiling heptane (4 mL) to remove unreacted 3-biphenyl-4-yl-1- (3-trifluoromethylphenyl) propenone, and remaining material was purified on silica gel column eluted with DCM/methanol/acetic acid (95: 4: 1) to yield the title compound (30 mg, 9%).

'H NMR (CDCI3) : S12. 8 (br s, 1H), 8.38 (d, 2H), 8.30 (s, 1 H), 8.26 (d, 2H), 8.18 (d, 1H), 7.83 (d, 1 H), 7.67-7. 30 (m, 11 H) ; 5.41 (dd, 1 H), 4.30 (dd, 1 H), 3.42 (dd, 1 H) ; HPLC-MS (Method A): m/z = 570 (M+1) R-t= 5.12 min.

General procedure (E) General procedure (E) for solution phase synthesis of compounds of the general formula (15) : HO) D O O E O H 0II E 0"0 S 9 ym. R4 Step 1 R4 0 0 Step 2 O E H H N X H m II R 0 0 Step 3 4 0 0 O O wherein X, D, E, m, n and R4 are as defined for formula (I), and Pg is a standard acid protect- ing group like methyl, ethyl, propyl, isopropyl, ter-butyl or benzyl.

The procedure is illustrated in the following examples.

Step 1: This reaction is known and has previously been described in WO 00/69810. The acylation of the amino group of of a protected amino acid is generally performed by activating the car- boxylic acid with diisopropyl-carbodiimide, dicyclohexylcarbodiimide or 1- [3- (dimethylamino)- propyl]-3-ethylcarbodiimide hydrochloride optionally in the presence of a side reaction inhibi- tor such as N-hydroxybenzotriazole. The protected amino acid (protected eg as methyl, ethyl,

propyl, isopropyl, ter-butyl or benzyl ester) is then added to the activated carboxylic acid.

When the protected amino acid is an ammonium salt, a non-nucleophilic base such as triethylamine or diispropylethyl amine is added. The acylation is carried out in a solvent such as THF, dioxane, toluene, DCM, DMF, NMP or a mixture of two or more of these. The reac- tion is generally performed between 0 °C to 80 °C, preferably between 20 °C to 40 °C. The product can be obtained by work-up procedures known to those skilled in the art.

Step 2 : This reaction is known and (Stetter H., Krasselt J. J. Heterocyclic. Chem. 14,573, 1977). The addition of aldehydes to activated double bonds is generally carried out by stirring the alde- hyde with a compound that contains an activated dobbelt bond such as a substituted prope- none in the presence of a catalyst such as cyanid or thiazoliums salts such as 3, 4-dimethyl- 5- (2-hydroxyethyl) thiazolium iodide, 3-benzyl-5- (2-hydroxyethyl)-4-methyl-1, 3-thiazolium chloride, 3-ethyl-5- (2-hydroxyethyl)-4-methyl-1, 3-thiazolium bromide or vitamin B,. When thi- aziliums salts are used as catalyst a non-nucleophilic amine base such as triethyl amine or DBU is added. The addition is carried out in a solvent such as ethanol, methanol, 1-propanol, 2-propanol, dioxane, DMSO, NMP or DMF or a mixture of two or more of these. The reac- tions are performed between 50 °C to 120 °C, preferably between 50 °C to 80 °C.

The product can be obtained by work-up procedures known to those skilled in the art.

Step 3: Removal of the standard acid protecting groups depends on the nature of the protecting groups but has in general been described. (Protective Groups in Organic'Chemistry. Greene T. W. , Wuts P. G. M. 1999, Wiley-lnterscience, p. 377) The procedure is illustrated in the following examples.

Example 93 (General procedure (E)) 3- {4- [4- (4-tert-Butylphenyl)- (4-cyclohexylphenyl)-4-oxobutyryl] benzoylamino}-2R- hydroxypropionic acid

Step 1: 3-(4-Formylbenzovlamino)-2R-hvdroxyDroDionic acid methvl ester In a 500 mL round bottom flask 4-formylbenzoic acid (7.5 g, 50 mmol) was dissolved in DMF (80 mL). 1-Hydroxybenzotriazole, hydrate (8.11 g, 60 mmol, 1.2 eq) and Nez (3- dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride (9.59 g, 50 mmol, 1 eq) were added. The solution was stirred under N2 for 3/4 hour and the R-isoserine methyl ester hydro- chloride (prepared as described in WO 02/00612, 11.67 g, 75 mmol, 1.5 eq) and DIPEA (13.6 mL, 80 mmol, 1.6 eq. ) were added and the mixture was stirred the overnight.

The reaction mixture was evaporated to 80 mL and then partitioned between ethyl acetate (200 mL) and water (200 mL). The aqueous phase was extracted twice with ethyl acetate (100 mL and 80 mL). The combined organic phases were washed with 0.2 N HCI (3 x 100 mL) and saturated sodium chloride : water (1: 1) (3 x 100 mL), dried over magnesium sulphate and evaporated to dryness. The compound was suspended in acetic acid ethyl ester (30 mL) and filtered. The solid was washed and the combined filtrates were evaporated in vacuo. The residue was purified by column chromatography. As eluent acetic acid ethyl ester: n-heptane (95: 5) and acetic acid ethyl ester : methanol (95 : 5) were used. 3- (4-Formylbenzoylamino)-2R- hydroxypropionic acid methyl ester (2.24 g, 10%) was isolated.

'H NMR (CDCI3) : 63. 82 (3H, s), 3.80-3. 94 (1 H, m), 4.42-4. 49 (1 H, m), 4.69 (1 H, br s), 6.78 (1 H, br s), 7.92 (4H, s).

Step 2: Preparation of 3-4-r4- (4-tert-butvlphenyl)-2- (4-cyclohexylphenyl)-4-oxobutyrvll- benzovlamino-2R-hydroxvpropionic acid ethvl ester To a mixture of 1- (4-tert-butylphenyl)-3- (4-cyclohexylphenyl) propenone (1.00 g, 2.91 mmol) in absolute ethanol (99%, 10 mL) under nitrogen, 3, 4-dimethyl-5- (2-hydroxyethyl) thiazolium iodide (165 mg, 0.58 mmol) and triethylamine (0.325 mL, 2.33 mmol) were added and the mixture was heated to reflux. (R)-3- (4-Formylbenzoylamino)-2-hydroxypropionic acid methyl ester (1.01 g, 3.78 mmol) was dissolved in absolute ethanol (99%, 10 mL) and was added dropwise to the refluxing mixture over an hour. The reaction mixture was refluxed for 7 days, allowed to cool to room temperature and partitioned between DCM (50 mL) and aqueous HCI (1 N, 50 mL). The aqueous phase was washed with DCM (50 mL). The combined organic phases were dried (Na2S04) and evaporated in vacuo. The residual oil was purified by silica gel column chromatography using ethyl acetate and heptane (1: 1) as eluent to give the pure 3- {4- [4- (4-tert-butylphenyl)-2- (4-cyclohexylphenyl)-4-oxobutyryl] benzoylamino}-2R- hydroxypropionic acid ethyl ester.

HPLC-MS (Method D): m/z = 612 (M+1); R, = 6.07 min.

Step 3 Preparation of 3-{4-[4-(4-tert-butylphenyl)-2-(4-cyclohexylphenyl)-4-oxobut ylryl]- benzovlaminoT-2R-hydroxypropionic acid To the above 3- {4- (4- (4-tert-butylphenyl)-2R- (4-cyclohexylphenyl)-4-oxobutyryl]- benzoylamino}-2-hydroxypropionic acid ethyl ester was added ethanol (10 mL). NaOH (244 mg) was dissolved in water (1 mL) and added to the mixture. The mixture was stirred for 30 min, diluted with water (15 mL) and pH was adjusted to 2 with aqueous HCI (1 N). The pre- cipitate was isolated by filtration to afford the title compound. Yield: 430 mg (25%).

'H NMR (DMSO-d6) : 51. 08-1.42 (14H, m), 1.60-1. 90 (5H, m), 2.42 (1H, m), 3.32-3. 53 (3H, m), 3.95 (1H, t), 4.08 (1H, dd), 5.40 (1H, dd), 7.15 (2H, d), 7.32 (2H, d), 7.52 (2H), 7.90 (2H, d), 7.95 (2H, d), 8.14 (2H, d), 8.70 (1 H, t) ; HPLC-MS (Method D): m/z= 584 (M+1); Ri = 5.68 min.

Example 94 (General procedure (E)) 3-{4-[4-Biphenyl-4-yl-2-(4-cyclohexylphenyl)-4-oxobutryl]ben zoylamino}-2R-hydroxy- propionic acid

'H NMR (DMSO-d6) selected : 1. 15-1.39 (m, 5H), 1.62-1. 79 (m, 5H), 2.38-2. 47 (t, 1H), 3.40- 3.51 (m, 2H), 3.84-3. 93 (broad, 1H), 4.09-4. 19 (dd, 1 H), 5.38-5. 45 (dd, 1H), 7.12-7. 20 (d, 2H), 7.32-7. 38 (d, 2H), 7.41-7. 55 (m, 3H), 7.72-7. 86 (dd, 4H), 7.89-7. 97 (d, 2H), 8.08-8. 18 (dd, 4H), 8.58-8. 65 (t, 1H) ; HPLC-MS (Method C): m/z= 604 (M+1); Rt = 6.57 min.

Example 95 (General procedure (E)) <BR> <BR> 3- {4- [2-Biphenyl-4-yl-4-oxo-4- (4-trifluoromethoxyphenyl) butyryl] benzoylamino}-2R-hydroxy- propionic acid

'H NMR (CDCl3): # 3.32 (1H, d), 3.89 (2H, bd), 4.23 (1H, dd), 4.44 (1H, bs), 5.33 (1H, d), 7.06 (1 H, bs), 7.3-7. 7 (11 H, m), 7.80 (2H, d), 8.05 (2H, d), 8.10 (2H, d). HPLC-MS (Method A): m/z = 606 (M+1) ; Rt = 5.08 min.

Example 96 (General procedure (E)) 3-{4-[4-(4-Cyclohexylphenyl)-2-(4-isopropylphenyl)-4-oxo-but yryl]benzoylamino}-2-(R)- hydroxypropionic acid

'H NMR (DMSO-d6) selected : 61. 13 (d, 6H), 1.10-1. 50 (m, 5H) 1.65-1. 90 (m, 5H), 2.57 (m, 1H), 2.80 (m, 1H), 4.02-4. 15 (m, 3H), 5.39 (dd, 1H), 7.16 (d, 2H), 7.35 (dd, 4H), 7.93 (d, 4H), 8.13 (d, 2H), 8.63 (br m, 1 H).

General procedure (F) General procedure (F) for solution phase synthesis of compounds of the general formula (14) : 0 o 0 Ho NHZ R4 R Step 1 0 O pud ---7 E 0 E 0 0 E 0 Oq/D ----- 0-Pg-0 N D----------3.. N Step 2 R 4 0 0 Step 3 R 0 0 0 ap--HO N-kD 0 Fi0 m HONX Step4 R'O O Step s R'E (14) (E) + (z) (1,) (Z)

wherein X, D, E, m, n and R4 are as defined for formula (I), and Pg is a standard carboxylic acid protecting group like methyl, ethyl, propyl, isopropyl, tert-butyl or benzyl.

The procedure is illustrated in the following example.

Example 97 (General procedure (F)) (Z)-3- {4- [4- (4-tert-Butylphenyl)-2- (4-cyclohexylphenyl)-4-oxobut-2-enoyl] benzoylamino}-2R- hydroxypropionic acid Step 1-Step 3: Preparation of 3-{4-[4-(4-tert-butylphenyl)-2-(4-cyclohexylphenyl)-4- oxobutyryllbenzovlamino-2R-hvdroxvpropionic acid The compound was synthesized according to general procedure (E).

Step 4: Preparation of 3-{4-[4-(4-tert-Butylphenyl)-2-(4-cyclohexylphenyl)-4-oxobut -2-enoyl]- <BR> <BR> <BR> benzovlamino-2R-hvdroxvpropionic acid<BR> <BR> <BR> <BR> 3- {4- [4- (4-tert-Butylphenyl)-2- (4-cyclohexylphenyl)-4-oxobutyryl] benzoylamino}-2R-hydroxy- propionic acid (350 mg, 0.599 mmol) was dissolved in THF (5 mL). DBU (0. 323 mL, 2.16 mmol) and crystalline iodine (183 mg, 0.719 mmol) were added. The mixture was stirred at room temperature for 30 min and poured into DCM (100 mL) and washed with aqueous so- dium sulfite (2 %, 50 mL). The organic phase was washed with aqueous HCI (1 N, 50 mL), dried (Na2SO4) and evaporated to dryness to afford an E and Z mixture of 3-14- [4- (4-tert- <BR> <BR> <BR> butylphenyl)-2- (4-cyclohexylphenyl)-4-oxobut-2-enoyl] benzoylamino}-2R-hydroxypropionic acid.

'H NMR (CDCI3) : 61. 28 and 1.32 (9H, s, two peaks), 1.15-1. 40 (5H, m), 1.60-1. 85 (5H, m), 2.36 and 2. 50 (1 H, m, two peaks), 4.38 (1 H, q), 6.88 and 7.62 (1 H, s, two peaks), 7.01 (1 H, d), 7. 13- 7. 25 (2H, dd), 7.30-7. 40 (2H, m), 7.45 (2H, dd), 7.73-8. 00 (6H, m).

Step 5: Preparation of (Z)-3-f4-f4- (4-te/t-butvlphenyl)-2R- (4-cvclohexylphenvl)-4-oxobut-2- enovllbenzovlaminol-2R-hvdroxypropionic acid The E and Z mixture of 3-{4-[4-(4-tert-butylphenyl)-2-(4-cyclohexylphenyl)-4-oxobut -2- enoyl] benzoylamino}-2R-hydroxypropionic acid was dissolved in toluene (25 mL). Concen- trated HCI (37 %, 900 NI) was added and the mixture was heated to reflux for 1 hour. The solvents were removed by evaporation to afford, after drying overnight in vacuo, (Z)-3- {4- [4- (4-tert-butylphenyl)-2- (4-cyclohexylphenyl)-4-oxobut-2-enoyl] benzoylamino}-2R-hydroxy- propionic acid.

'H NMR (CDCI3) : 51. 32 (9H, s), 1. 15-1. 42 (5H, m), 1.60-1. 90 (5H, m), 2.50 (1H, m), 3.78 (1H, m), 3.88 (1 H, m), 4.38 (1 H, m), 7.22 (2H, d), 7.46 (2H, d), 7.48 (2H, d), 7.61 (1 H, s), 7.78 (2H, d), 7.88 (2H, d), 7.98 (2H, d). HPLC-MS (Method D): m/z = 582 (M+1), Rt = 5.40 min.

Example 98 (General procedure (F) ) (Z)-3-{4-[4-(4-tert-Butyphenyl)-2-(4-cyclohexylphenyl)-4-oxo but-2-neoyl]benzoylmaino}-2R- hydroxypropionic acid

'H NMR (CDCI3) : J1. T6-1. 41 (5H, m), 1.60-1. 90 (5H, m), 2.47 (1H, m), 3.75 (2H, m), 4.32 (1H, m), 7.19 (2H, d), 7.29-7. 50 (6H, m), 7.52-7. 67 (4H, m), 7.71 (2H, d), 7.92 (2H, d), 7.98 (2H, d).

Example 99 (General procedure (F) ) The compound of example 42 was also prepared ac- cording to the General procedure (F) as illustrated below : (Z)-3- {4- [2-Biphenyl-4-yl-4-oxo-4- (4-trifluoromethoxyphenyl) but-2-enoyl] benzoylamino}-2R- hydroxypropionic acid HPLC-MS (Method A): m/z = 604 (M+1); Rt = 4.98 min.

Example 100 (General procedure (F)) <BR> <BR> (Z)-3- {4- [4- (4-Cyclohexylphenyl)-2- (4-isopropylphenyl)-4-oxobut-2-enoyl] benzoylamino}-2R- hydroxypropionic acid

'H NMR (CDCb) : a 1.18 (d, 6H), 1.10-1. 50 (m, 5H), 1.60-1. 93 (m, 5H), 2.52 (m, 1H), 2.88 (m, 1H), 3.70 (m, 2H), 4.37 (br s, 1H), 7.23 (dd, 4H), 7.44 (d, 2H), 7.58 (s, 1H), 7.70-8. 00 (m, 6H). HPLC-MS (Method D): m/z = 568 (M+1); Rt = 5.34 min Example 101 (General procedure (F)) (Z)-3- {4- [2- (4-Cyclohexylphenyl)-4- (3, 5-dichlorophenyl)-4-oxobut-2-enoyl] benzoylamino}- propionic acid

'H NMR (CDCI3) : 91. 18-1.48 (m, 5H), 1.65-1. 94 (m, 5H), 2.50 (m, 1H), 2.66 (t, 2H), 3.67 (q, 2H), 6.94 (brs, 1H), 7. 15 (d, 2H), 7.22 (d, 2H), 7.49 (m, 3H), 7.86 (m, 3H), 7.94 (d, 2H); HPLC-MS (Method D): m/z = 579 (M+1); Rt = 5.60 min.

General procedure (G) General procedure (G) for solution phase synthesis of compounds of the general formula (14) : 0 0 D Pg, 0 D H /pug\ E E Step 1 Step 2 o D o D O A Stop 3 H 0AX-q (E) + (Z) O X Step 3 O E E (E) + (Z) O.. D 0 E Q O O Step4 P9sO) X p NX/ , 1 HO H Step4 R'O O Step s R ) (a) (Z)

wherein X, D, E, m, n and R4 are as defined for formula (I), and Pg is a standard carboxylic acid protecting group like methyl, ethyl, propyl, isopropyl, tert-butyl or benzyl.

Example 102 (General procedure (G) ). The compound of example 65 was also prepared according to the General procedure (G) as illustrated below : 3- {4- [2- [4- (2, 2-Dimethyl-propyl)-phenyl]-4-oxo-4- (4-trifluoromethoxyphenyl)-but-2-enoyl]- benzoylamino] propionic acid

Step 1 and Step 2: 4-[2-[4-(2,2-dimethylpropyl)phenyl]-4-oxo-4-(4-trifluorometh oxyphenyl)- butyryllbenzoic acid A mixture of 3- [4- (2, 2-Dimethylpropyl) phenyl]-1- (4-trifluoromethoxyphenyl) propenone (10.51 g; 29 mmol) (Building Block 8), 3, 4-Dimethyl-5- (2-hydroxyethyl) thiazolium iodide (1. 77g, 6.2

mmol) and triethylamine (3.52 mL ; 25.27 mmol) was stirred and refluxed in 100 mL of abso- lute ethanol. A solution of methyl 4-formylbenzoate (6.8 g, 41.4 mmol) in 50 mL of absolute ethanol was added drop wise to the mixture. Stirring and heating was continued for 16 hours.

The mixture was cooled and partitioned between 1 N HCI (150 mL) and DCM (200 mL). The organic phase was separated and the aqueous phase was further extracted with DCM (200 mL). The combined DCM extrats was washed with water, dried (Na2SO4), clarified with Norite A, filtered and evaporated to afford 14 g (80 %) of intermediary ester compond. This sub- stance was dissolved in 80 mL of methanol and sodium hydroxide (2.68 g ; 67.1 mmol) in 10 mL of water was added to the mixture. Stirring was continued till the disappearance of the ester starting material, and the pH was adjusted to 2 with dilute hydrochloric acid. The pre- cipitate was filtered off and dried to afford 10.3 g of 4- [2- [4- (2, 2-dimethylpropyl) phenyl]-4- oxo-4- (4-trifluoromethdxyphenyl) butyryi] benzoic acid.

'H NMR (CDCI3,) : 98. 12 (d, 2H), 8.09 (d, 2H), 8.02 (d, 2H), 7.28 (d, 2H), 7.21 (d, 2H), 7.08 (d, 2H), 5.25 (dd, 1 H) 4.20 (m, 1 H), 3.30 (dd, 1 H), 2.43 (s, 2H), 0.88 (s, 9H).

Step 3: Preparation of (EeZ)-4-i2-r4-(2. 2-DimethviPropyl) phenyll-4-oXo-4-(4 trifluoromethoxvphenvl) but-2-enonvllbenzoic acid. <BR> <BR> <BR> <BR> <P>4- [2- [4- (2, 2-dimethylpropyl) phenyl]-4-oxo-4- (4-trifluoromethoxyphenyl) butyryl] benzoic acid (9.3 g ; 20.1 mmol) was dissolved in THF (700 mL). The mixture was stirred while iodine (6.34 g ; 24.1 mmol) and DBU (11 g; 42.4 mmol) were added. The mixture was stirred for 2 hours and concentrated under reduced pressure to about 100 mL of volume. A 2% solution of so- dium sulfite (150 mL) and 1 N hydrochloric acid (150 mL) was added. The mixture was ex- tracted with DCM (2x 300 mL), washed with brine (400 mL). The organic phase was sepa- rated, dried (Na2SO4), clarified with Norite A, filtered and evaporated to afford 8.2 (88 %) of (E, Z)-4- [2- [4- (2, 2-Dimethylpropyl) phenyl]-4-oxo-4- (4-trifluoromethoxyphenyl) but-2- enonyl] benzoic acid HPLC-MS (Method A): m/z = 511 (M+1); Rt = 5.60 min.

Step 4 and Step 5: Preparation of (Z)-3-4-r2-f4- (2, 2-Dimethyl-propvl)-phenyll-4-oxo-4- (4- trifluoromethoxy-phenvl)-but-2-enoyll-benzovlaminopropionic acid A solution of (E, Z)-4- [2- [4- (2, 2-Dimethylpropyl) phenyl]-4-oxo-4- (4-trifluoromethoxyphenyl) but- 2-enonyl] benzoic acid (7.2 g ; 14.1 mmol) in 20 mL of DMF was stirred while 1- hydroxybenzotriazole hydrate (2.29 g ; 19.9 mmol) was added. The mixture was stirred for 1 hour at room temperature follow by the addition of EDAC (3.24 g ; 16.92 mmol), methyl 3-

aminopropionate hydrochloride (2. 95 g ; 21.16 mmol) and DIPEA (7.37 mL; 42.31 mmol), re- spectively. The mixture was stirred at 40 °C for 2 hours. The mixture was evaporated under reduced pressure and the residue was partitioned between water and ethyl acetate. The or- ganic phase was separated, washed with brine, dried (Na2SO4) and evaporated. The residue was dissolved in a mixture of methanol (80 mL) and THF (20 mL) and sodium hydroxide (1.69 g ; 42.3 mmol) in 10 mL of water was added. The mixture was stirred for 1.5 hours at room temperature. The mixture was concentrated to about 30 mL under reduced pressure and 40 mL of water was added. The pH was adjusted to 1.5 by addition of 1 M hydrochloric acid. The precipitate was filtered off and dried to afford 7.9 g of crude substance. This sub- stance was boiled for one hour in a mixture of toluene (100 mL) and concentrated hydrochlo- ric acid (2.7 mL). The mixture was cooled to room temperature and the precipitate was iso- lated to afford 5.6 g (68 %) of the title compound.

'H NMR (CDC13) : 9 8. 02 (m, 4H), 7.80 (d, 2H), 7.60 (s, 1H), 7.48 (d, 2H), 7.30 (d, 2H); 7.18 (d, 2H), 6.84 (t, 1 H), 3.63 (q, 2H), 2.72 (t, 2H), 2.50 (s, 2H), 0.90 (s, 9H); HPLC-MS (Method A): m/z = 583 (M+1) ; Ri = 5.03 min.

Example 103 3- {4- [4- (4-tert-Butylphenyl)-4-oxo-2- (4-trifluoromethoxyphenyl) butyryl] benzoylamino}- propionic acid Step 1 : 4-f4- (4-tert-Butviphenvl)-4-oxo-2- (4-trifluoromethoxvDhenvl) butvrvllbenzoic acid methyl ester In a dry three necked 50 mL round bottom flask was placed 1- (4-tert-butylphenyl)-3- (4- trifluoromethoxyphenyl) propenone (9.47 g, 27.18 mmol), 3, 4-dimethyl-5- (2- hydroxyethyl) thiazolium iodide (7.75 g, 27.18 mmol) and triethylamine (13.26 mL, 95.13 mmol) under nitrogen. The mixture was dissolved in refEuxing ethanol (45 mL, 99%). A solu-

tion of 3- (4-formylbenzoylamino) propionic acid methyl ester (6.97 g, 40. 77 mmol) in ethanol (50 mL, 99%) was drop wise added over approximately 21/2 h. The mixture was refluxed for 5 h under nitrogen where after the reaction was cooled and evaporated to dryness. The resid- ual oil was dissolved in DCM (100 mL) and extracted with 1 N HCI (150 mL) and the water phase was extracted with DCM (50 mL) once more. The combined organic phases were dried with magnesium sulphate, filtered and evaporated to dryness to afford 4- [4- (4-tert- butylphenyl)-4-oxo-2- (4-trifluoromethoxyphenyl) butyryl] benzoic acid methyl ester (16.9 g).

HPLC-MS (Method C) : m/z = 513 (M+1); Rt = 7.33 min.

Step 2 : 4-r4- (4-tert-Butvlphenvl)-4-oxo-2- (4-trifluoromethoxvphenvl) butyrvllbenzoic acid 4- [4- (4-tert-Butylphen4)-4-oxo-2- (4-trifluoromethoxyphenyl) butyryl] benzoic acid methyl ester (13.9 g, 27.2 mmol) was suspended in ethanol (120 mL, 96%) and added sodium hydroxide (4N, 27,2 mL). After 41/2 h the reaction was evaporated to dryness. The residue was added water (200 mL) and hydrochloric acid (4N, 30 mL) to pH 1-2 causing precipitation. The mix- ture was stirred for 1/2 h. The precipitate was filtered, washed carefully with water, and dried the night over at 40°C in vacuo. The residue was crystallised from methanol and water to af- ford 4- [4- (4-tert-butylphenyl)-4-oxo-2- (4-trifluoromethoxyphenyl) butyryl] benzoic acid (10.4 g).

HPLC-MS (Method D): m/z = 499 (M+1) ; R, = 5.51 min.

3- 4-r4- (4-tert-Butylphenvl)-4-oxo-2- (4-trifluoromethoxvphenvl) butyryllbenzovlamino- propionic acid methyl ester 4- [4- (4-tert-Butylphenyl)-4-oxo-2- (4-trifluoromethoxyphenyl) butyryl] benzoic acid (10.4 g, 20.86 mmol) was dissolved in DMF (150 mL) and added EDAC (5.60 g, 29.20) and HOBt (4.23 g, 31.29 mmol). After'h h a solution of beta-alanine methyl ester hydrochloride (4.37 g, 31.29 mmol) and DIPEA (5.36 mL, 31.29 mmol) in DMF (20 mL) was added to the above mixture and the reaction mixture was stirred night over. The reaction was concen- trated to approximately 100 mL and diluted with water (200 mL) and extracted with ethyl ace- tate (200 mL). The water phase was extracted with additional ethyl acetate (75 mL). The combined organic phases were washed with hydrochloric acid (0.2 N, 3 x 150 mL), aqueous sodium chloride (50% saturation, 3 x 150 mL) and dried over magnesium sulphate. The dried organic phase was filtered and evaporated to dryness to afford 3- {4- [4- (4-tert-butylphenyl)-4- oxo-2-(4-trifluoromethoxyphenyl)butyryl]benzoylamino]propion ic acid methyl ester (12.76 g).

HPLC-MS (Method D): m/z = 584 (M+1); Rt = 5.48 min.

Step 4: 3-4-f4- (4-tert-Butvlphenyl)-4-oxo-2- (4-trifluoromethoxvDhenvl) butvrvllbenzovlamino}- propionic acid 3- {4- [4- (4-tert-Butylphenyl)-4-oxo-2- (4-trifluoromethoxyphenyl) butyryl] benzoylamino}- propionic acid methyl ester (12 g, 21 mmol) was dissolved in ethanol 96% (250 mL), added 4N NaOH (31.2mL, 125 mmol), and stirred for 2 h 45 min. The reaction mixture was concen- trated in vacuo and the residue suspended in water (150 mL) and added hydrochloric acid (4N, 34 mL) to pH 1-2. After 1 h the precipitate was filtered and washed carefully with water and dried. The residue was purified by preparative HPLC using acetonitrile (gradient from 42% to 97.5%), water and TFA (2. 5 %) as eluent to afford 4.7 g of the title compound.

'H NMR (DMSO-d6) selected data : # 8.68 (t, 1H), 8.15 (d, 2H), 7.93 (m, 4H), 7.56 (m, 4H), 7. 33 (d, 2H); 5.51 (m, 1H), 4.10 (m, 1H), 3.45 (m, 4H), 1.31 (s, 9H); HPLC-MS (Method A): m/z = 570 (M+1); Rt = 5.95 min.

Example 104 3-{4-[4-(4-tert-Butrylphenyl)-4-oxo-2-(4-trifluoromethoxyphe nyl)butyryl]benzoylamino}-2R- hydroxypropionic acid 3-{4-[4-(4-tert-Butrylphenyl)-4-oxo-2-(4-trifluoromethoxyphe nyl)butyryl]benzoylamino}-2R- hvdroxvproonic acid methyl ester

4- [4- (4-tert-Butylphenyl)-4-oxo-2- (4-trifluoromethoxyphenyl) butyryl] benzoic acid (0.64 g, 1.28 mmol) was dissolved in DMF (10 mL) and added EDAC (0.35 g, 1.8 mmoi) and HOBt 0, 26 g.

After % h a solution of R-isoserine methyl ester hydrochloride (0.30 g, 1. 92mmol) and diiso- propylethylamine (0.31 mL, 1.92 mmol) in DMF (6 mL) were added to the above mixture and stirred at room temperature for16 hours. The mixture was diluted with water (30 mL) and ex- tracted with ethyl acetate (30 mL). The aqueous phase was extracted once more with ethyl acetate (15 mL) and the combined organic phases were washed with hydrochloric acid (0.2N, 3 x 20 mL), an aqueous solution of 50% saturated sodium chloride (3 x 20 mL), dried over magnesium sulphate, filtered and evaporated to dryness to afford 0.79 g of 3- {4- [4- (4- tert-Butylphenyl) (4-trifluoromethoxyphenyl) butyryl] benzoylamino}-2R- hydroxypropionic acid methyl ester.

HPLC-MS (Method D) m/z = 600 (M+1) ; Rt = 5.20 min.

3- {4- [4- (4-tert-Butylphenyl)-4-oxo-2- (4-trifluoromethoxyphenyl) butyryl] benzoylamino}-2R- hydroxypropionic acid methyl ester (0.77 g, 1.28 mmol) was dissolved in ethanol (96%, 30 mL), added sodium hydroxide (4N, 1.93 mL), and stirred for 2% Z h. The reaction was concen- trated in vacuo and the residue suspended in water (30 mL) and added hydrochloric acid (4N, 2 mL) to pH 1-2. After 1/2 h the precipitate was filtered, washed carefully with water, and dried in vacuo. The product was purified by preparative HPLC using acetonitrile (gradient from 55.5% to 97.5%), water and TFA (2.5%) as eluent to afford 0.16 g of the title compound.

'H NMR (DMSO-d6) selected data: 5 8. 66 (t, 1H), 8.15 (d, 2H), 7.93 (m, 4H), 7.56 (m, 4H), 7.33 (d, 2H); 5.53 (m, 1 H), 4.07-4, 20 (m, 2H), 3. 48-3, 63 (m, 2H), 1.31 (s, 9H); HPLC-MS (Method C): m/z = 586 (M+1); Rt = 5.42 min.

Example 105 <BR> <BR> 3- {4- [4- (4-tert-Butylphenyl)-4-oxo-2- (4-trifluoromethoxyphenyl) but-2-enoyl] benzoylamino}-2R- hydroxypropionic acid

step 3: 3-{4-[4-(4-tert-Butylphenyl)-4-oxo-2-(4-trifluoromethoxyphen yl)but-2-enoyl]- benzovlaminoT-2R-hvdroxvpropionic acid 3- {4- [4- (4-tert-Butylphenyl)-4-oxo-2- (4-trifluoromethoxyphenyl) butyryl] benzoylamino}-2R- hydroxypropionic acid (0.15 g, 0.24 mmol) from Example 104 was dissolved in THF (3 mL) and added DBU (0, 13 mL, 0.86 mmol), iodine (0.11 g, 0.44 mmol) and stirred at RT. The sol- vent was evaporated off and the residue dissolved in DCM (25 mL) and washed with sodium sulphite (2%, 10 mL), hydrogen chloride (1N, 10 mL), water and saturated sodium chloride (2 X 1: 1,10 mL), dried over magnesium sulphate, filtered and evaporated to dryness giving 0.11 g of a mixture of E and Z formation. The residue was dissolved in toluene (5 mL) and added concentrated hydrogen chloride and refluxed for 1 h at 130°C in an oil bath. The reac- tion was cooled and evaporated to dryness and this was repeated twice with DCM (2 x 5 mL). The product was purified by preparative HPLC using acetonitrile (57.5% to 97.5%), wa- ter and TFA (2.5%) as eluent and evaporated to afford 0.04 g of the title compound.

'H NMR (DMSO-d6) selected data: 5 8.63 (t, 1H), 8.05 (m, 3H), 7.95 (d, 2H), 7.91 (d, 2H), 7.80 (d, 2H) ; 7.58 (d, 2H), 7.48 (d, 2H), 5. 48 (broad, 1 H), 4, 15 (m, 1 H), 3.54 (m, 1H) 1.31 (s, 9H); HPLC-MS (Method C): m/z = 585 (M+1); Rt = 5.78 min.

General procedure (H) General procedure (H) for separation of eantiomers of compounds of the general formula (fizz : ? old HO X p Fi 0 H E H pg-o+NH2 > Pg-O~+ Y Y R4 Step 1 R4 0 0 Step 2 0 E O H 0 E 0 Nix R< 0 0 R''0 0 Stop 3 0 0 E 0 0. E 0 HO m n N II X II D "'HO m n N II X II D li) Step 4 R'O O R° O O O) (R) + (S)

Example 106 (General procedure (H) ) The compound of example 4 was also prepared and the enantiomers seperated according to General procedure (H) as illustrated below : <BR> <BR> 3- {4- [4- (3, 5-Bis-trifluoromethylphenyl)-2- (4-cyclohexylphenyl)-4-oxo-butyryl] benzoylamino}- propionic acid

Step 1: 3- (4-Formvlbenzovlamino) propionic acid methyl ester 3- (4-Formylbenzoylamino) propionic methyl ester was synthesized according to the proce- dure described in WO 00/69810

Step 2: 3-4-f4- (3, 5-Bis-trifluoromethvlphenyl)-2- (4-cyclohexvlphenvl)-4-oxo-butvryll- benzovlaminolpropionic acid methyl ester To a mixture of 1- (3, 5-Bis-trifluoromethylphenyl)-3- (4-cyclohexylphenyl) propenone (6.12 g, 14.35 mmol) in absolute ethanol (99%, 25 mL) under nitrogen, 3, 4-dimethyl-5- (2- hydroxyethyl) thiazolium iodide (819 mg, 2.87 mmol) and triethylamine (1.60 mL, 11.5 mmol) were added and the mixture was heated to reflux. 3- (4-Formylbenzoylamino) propionic acid methyl ester (4.39 g, 18.7 mmol) was dissolved in absolute ethanol (99%, 15 mL) and was added dropwise to the refluxing mixture over 2 hours. The reaction mixture was refluxed for 30 min, allowed to cool to room temperature. 3- {4- [4- (3, 5-Bis-trifluoromethyl-phenyl)-2- (4- cyclohexyl-phenyl)-4-oxo-butyryl]-benzoylamino}-propionic acid methyl ester could be iso- lated by filtration followed by washing with ethanol and drying in vacuo. Yield: 6.9 g (73 %).

Step 3: 3-f4-f4- (3. 5-Bis-trifluoromethvlphenvl)-2- (4-cvclohexvlphenvl)-4-oxobutyryll- benzov ! amino} DroDionic acid.

3- {4- [4- (3, 5-Bis-trifluoromethylphenyl)-2- (4-cyclohexylphenyl)-4-oxobutyryl] benzoylamino}- propionic acid methyl ester (6.20 g, 9.38 mmol) was dissolved in THF (75 mL), HCI (6 N, 25 mL) was added and the mixture was heated to reflux, after 2 hours the heat was turned of and the mixture was stired at room temperature for 16 hours. The mixture was evaporated to dryness to give the title compound. Yield: quantitative.

'H NMR (DMSO-ds) : 68. 72 (t, 1H), 8.60 (s, 2H), 8.42 (s, 1H), 8.14 (d, 2H), 7.90 (d, 2H); 7.34 (d, 2H), 7.17 (d, 2H), 5.43 (dd, 1H), 4.29 (dd, 1H), 3.64 (dd, 1H and t 2H), 3.42 (t, 2H), 2.42 (m, 1 H), 1.78-1. 64 (m, 5H), 1.38-1. 25 (m, 5H); HPLC-MS (Method D): m/z = 648 (M+1); R, = 5. 58 min.

Step 4: Resolution by chiral HPLC 3- {4- [4- (3, 5-Bis-trifluoromethylphenyl)-2- (4-cyclohexylphenyl)-4-oxobutyryl] benzoylamino}- propionic acid (500 mg, 0.77 mmol) was dissolved isopropanol : heptane 60: 40 (20 mL).

Trifluor acetic acid (0.02 mL) was added. The racemic mixture was separated on an AD colum 50 X 500 mm (from DAICEL), flow 100 mL/min. Eluted with isopropanol : heptane mix- ture 6: 4 with 0.01% trifluoroacetic acid. Two fractions containing compound in eluent were collected. Each fraction was kept separate but otherwise treated identically. The volume of each fraction was reduced in vacuo to about 1/8 of initial volume, separated between di- chloromethane (1 L) and aqeous NaHC03 (10 %, 500 mL). The organic phase was dried (NaS04) and evaporated to a white crystals. The crystals were reluxed in acetonitrile, fol- lowed by subsequent cooling to room temperature. The pure enantiomers could be isolated by filtration followed by drying in vacuo.

Example 107 <BR> <BR> <BR> 3-f4-f4- (3, 5-Bis-trifluoromethvlphenvl)-2- (4-cvclohexvlphenvl)-4-oxo-butvrvllbenzovlamino- propionic acid Fastest eluting enatiomer: Chiralpak AD, 4.6X250 mm Heptane, isopropanol, trifluoroacetic acid 60: 40: 0.1, 0.6 mL/min flow. Retentiontime = 8.2 min.

Example 108 3-{4-[4-(3,5-Bis-trifluoromethylphenyl)-2-(4-cyclohexylpheny l)-4-oxo-butyryl]benzoylamino}- propionic acid Slowest eluting enantiomer : Chiralpak AD, 4.6X250 mm Heptane, isopropanol, trifluoroacetic acid 60: 40: 0.1, 0.6 mUmin flow. Retention time = 12. 1 min.

Further preferred compounds of the invention include : General procedure (I) General procedure (I) for solution phase synthesis of compounds of the general formula (I6) : E Ou 0 0 P9\ X OH P9\ X OH H 0 0 Step 1 E Step 2 0 Q O pg", A N Steps" ! Step4 Steps E E 0 E 0 E y H I 9\Oy NXV , (NW hi0- "N X. (N m R 0 0 Step 6 R 0 0 (16)

wherein Pg, E, X, D and R4 are as defined above. The Pg added in step 5 may be different from the Pg of the previous steps.

Example 109 (General procedure (I)) 3-{4-[2-(4-Cyclohexylphenyl)-2-(4-trifluoromethoxyphenylcarb amoyl)ethyl]-benzoylamino}- propionic acid

Step 1: E. Z-4-[2-Carboxy-2-(4-cyclohexylphenyl)vinyl]benzoic acid methyl ester A mixture of methyl 4-formylbenzoate (5.75 g ; 35 mmol), 4-cyclohexylphenylacetic acid (10.93 g, 50.05 mmol) (Chem. Ber., 76, (1943), 308), acetic anhydride (17.54 mL, 185.5

mmol) and triethylamine (4.87 mL ; 35 mmol) was stirred and heated at 155 °C for 15 min- utes. The mixture was cooled to 90 °C and water (18 mL) was added drop wise at such a rate that the temperature was maintained between 90 °C and100 °C. The mixture was cooled to room temperature and a 50 % aqueous acetic acid solution (25 mL) was added. The pre- cipitate was filtered off, washed with 25 % aqueous acetic acid (100 mL) and finally water (125 mL). The crude product was dried and recrystallised from heptane to afford 10.89 g (85 %) of a E/Z mixture of 4- [2-carboxy-2- (4-cyclohexylphenyl) vinyl] benzoic acid methyl ester.

'H NMR (DMSO-d6) : a 12.88 (br s, 1 H), 8.98-7. 05 (m, 9H), 3.87 and 3.83 (s, 3H) 2.54 (m, 1 H), 1.68-1. 78 (m, 5H), 1.48-1. 20 (m, 5H).

Step 2: 4-[2-Carboxv-2-(4-cvclohexvlDhenvl) ethvl1-benzOic acid methyl ester A mixture of E, Z-4- [2-carboxy-2- (4-cyclohexylphenyl) vinyl] benzoic acid methyl ester (10.85 g, 28.77 mmol) and palladium on activated carbon (1.085 g, 10 %) in 100 mL of methanol was hydrogenated at 56 psi for 7 hours. The catalyst was filtered off, and the filtrate was evapo- rated to dryness to afford 5.73 (53 %) of 4- [2-carboxy-2- (4-cyclohexylphenyl) ethyl] benzoic acid methyl ester as a solid.

'H NMR (CDCi3) : a 7. 90 (d, 2H), 7.23-7. 13 (m, 6H), 3.88 (s, 3H), 3.84 (t, 1H), 2.43 (dd, 1H), 3.07 (dd, 1H), 2.48 (m, 1 H), 1.90-1. 70 (m, 5H), 1.45-1. 18 (m, 5H).

HPLC-MS (Method D): m/z = 367 (M+1); Rt = 5.03 min.

Step 3: 4-r2-Chlorocarbonyl-2- (4-cvclohexvlDhenvl) ethvllbenzoic acid methyl ester A solution of 4- [2-carboxy-2- (4-cyclohexylphenyl) ethyl]-benzoic acid methyl ester (5,58 g, 15,2 mmol) in toluene was stirred and thionyl chloride (2.79 mL, 38.20 mmol) was added.

The mixture was stirred and refluxed for 15 minutes and the toluene removed under reduced pressure. The residue was stripped twice with toluene to afford 5.75 g (98 %) of 4- [2- chlorocarbonyl-2- (4-cyclohexylphenyl) ethyl] benzoic acid methyl ester.

'H NMR (CDCI3) : 57. 79 (d, 2H), 7.40-7. 08 (m, 6H), 4.11 (m, 1 H), 3.85 (s, 3H), 3.30 (m, 1 H), 3. 03 (m, 1H), 2.45 (m, 1 H), 1.83-1. 65 (m, 5H), 1.42-1. 15 (m, 5H).

Step 4: 4-L2- (4-Cvclohexylphenvl)-2- (4-trifluoromethoxyphenylcarbamoyl) ethvllbenzoic acid A solution of 4-trifluoromethoxyaniline (0.575 g, 3.25 mmol) in dry toluene (50 mL) was stirred under a nitrogen atmosphere. Triethylamine (0.448 mL, 3.25 mmol) was added fol- lowed by a solution of 4- [2-chlorocarbonyl-2- (4-cyclohexylphenyl) ethyl]-benzoic acid methyl ester (1.25 g, 3.25 mmol) in dry toluene (25 mL). The mixture was refluxed for 1 hour, cooled to room temperature, washed with water (2 x 100 mL) and a saturated sodium chloride solu- tion (2 x 100 mL). The organic phase was collect evaporated to dryness under reduced pres- sure to afford 1.43 g of crude intermediary ester compound. The ester was dissolved in a mixture of methanol (12.5 mL) and THF (5 mL) and a 4M aqueous sodium hydroxide (2.43 mL, 9.75 mmol) was added. The mixture was stirred for 16 hours at room temperature. The mixture was filtered and the filtrate was made acidic (pH=2) with concentrated hydrochloric acid. The mixture was-stirred for one hour and the precipitate was filtered off, washed with water and dried to afford 1.32 g (80 %) of 4- [2- (4-cyclohexylphenyl)-2- (4-trifluoromethoxy- phenylcarbamoyl) ethyl] benzoic acid as a solid.

'H NMR (DMSO-d6) : 6 10.38 (s, 1H), 7.78 (d, 2H), 7.65 (d, 2H); 7.28 (m, 2H), 7.30 (d, 2H), 7.18 (d, 2H), 4.03 (m, 1H), 3. 45 (m, 1H), 2.42 (m, 1H), 1.85-1. 13 (m, 10H).

Step 5 and Step 6: 3-4-f2- (4-Cvclohexylphenyl)-2- (4-trifluoromethoxvphenyicarbamoyl)- ethvllbenzoylaminoEDropionic acid A solution of 4- [2- (4-cyclohexylphenyl)-2- (4-trifluoromethoxyphenylcarbamoyl) ethyl]-benzoic acid (1.44 g ; 2.82 mmol) in DMF (45 mL) was stirred while 1-hydroxy-benzotriazole hydrate (0.456 g; 3.38 mmol) was added. The mixture was stirred for 1 hour at room temperature fol- lowed by the addition of EDAC (0.648 g ; 3.38 mmol), methyl 3-aminopropionate hydrochlo- ride (0.589 g; 4.22 mmol) and DIPEA (1. 47 mL; 8.45 mmol). The mixture was stirred at 40 °C for 2 hours. The mixture was evaporated under reduced pressure and the residue was parti- tioned between water and ethyl acetate. The organic phase was washed with brine, dried (MgS04) and evaporated to afford 2.11 g of intermediary ester. This substance (0.3 g, 0.5 mmol) was dissolved in a mixture of methanol (11 mL) and THF (4.4 mL) and a 4 M sodium hydroxide solution (0.37 mL; 1.50 mmol) was added. The mixture was stirred for 16 hours at room temperature. The mixture was concentrated to about 1 mL under reduced pressure and water (15 mL) was added. The pH was adjusted to 1.5 by addition of 1 M hydrochloric acid.

The precipitate was filtered off, washed with water and dried to afford 0.25 g (85 %) of the title compound.

'H NMR (DMSO-d6) : a 12.20 (br s, 1 H), 10.25 (s, 1 H), 8.43 (t, 1 H), 7.70 (d, 2H), 7.62 (d, 2H), 7. 35 (d, 2H), 7.30 (d, 2H), 7.26 (d, 2H), 7.18 (d, 2H), 3.99 (m, 1H), 3.40 (m, 1H), 3.00 (dd, 1H), 2.48 (m, 3H), 1.85-1. 13 (m, 10H).

The following compounds (examples 110-110) were prepared in analogy with the above method.

Example 110 (General procedure 3-fui (3, 5-Dichlorophenylcarbamoyul)-2-(4-trifluoromethoxyphenyl)ethy l]benzoylamino}- propionic acid 'H NMR (DMSO-d6) : B 12.30 (brs, 1H), 10.50 (s, 1H), 8.45 (t, 1H), 7.88-7. 20 (m, 11H), 4.08 (m, 1 H), 3.42 (m, 3H), 3.05 (dd, 1 H), 2.48 (m, 2H).

HPLC-MS (Method D): m/z = 569 (M+1); R, = 4.83 min.

Example 111 (General procedure (I)) 3-{4-[2-(3,5-Dichlorophenylcarbamoyl)-2-(4-trifluoromethoxyp henyl)ethyl]benzoylamino}-2R- hydroxvpropionic acid

'H NMR (DMSO-d6) : my 12.55 (br s, 1 H), 10.53 (s, 1H), 8.43 (t, 1H), 7.75 (d, 2H), 7.62 (s, 2H); 7.55 (d, 2H), 7.35 (d, 2H), 7.30 (d, 2H), 7.28 (s, 1H), 4.12 (m, 1H), 3.08 (dd, 1H).

HPLC-MS (Method D): m/z = 585 (M+1); Rt = 4.65 min.

Example 112 (General procedure (I)) 2R-Hydroxy-3-{4-[2-(4-trifluoromethoxyphenyl)-2-(4-trifluoro methoxyphenylcarbamoyl)ethyl]- benzoylamino}propionic acid

'H NMR (DMSO-d6) : ã 8. 40 (t, 1H), 7.75 (d, 2H), 7.62 (s, 2H); 7.55 (d, 2H), 7.30 (m, 6H), 4.10 (m, 2H), 3.08 (dd, 1H).

HPLC-MS (Method D): m/z = 601 (M+1) ; Rt = 4.42 min.

Example 113 (General procedure (I)) 3-{4-[2-(4-Trifluoromethoxyphenyl)-2-(4-trifluoromethoxyphen ylcarbamoyl)- ethyl]benzoylamino}propionic acid

'H NMR (DMSO-d6) : 5 10.40 (s, 1H), 8.47 (t, 1H), 7.70 (d, 2H), 7.65 (d, 2H); 7.55 (d, 2H), 7.30 (m, 6H), 4.10 (m, 1H), 3.05 (dd, 1H), 2.47 (t, 2H).

HPLC-MS (Method D): m/z = 585 (M+1) ; Rt = 4.58 min.

Example 114 (General procedure (I)) 3-{4-[2-(4-Cyclohexylphenyl)-2-(3,5-dichlorophenylcarbamoyl) ethyl]-benzoylamino}-propionic acid

'H NMR (DMSO-d6): # 12.22 (br s, 1 H), 10.40 (s, 1 H), 8.42 (t, 1 H), 7.70 (d, 2H), 7.60 (s, 2H), 7.35-7. 10 (m, 7H), 3.95 (m, 1H), 3.42 (m, 2H), 3.00 (dd, 1H), 2.48 (m, 3H), 1.85-1. 13 (m, 1 OH).

Example 115 (General procedure (I)) 3-{4-[2-(4-Cyclohexylphenyl)-2-(4-trifluoromethylphenylcarba moyl)ethyl]benzoylamino}- propionic acid 'H NMR (DMSO-d6) : 9 12. 32 (br s, 1 H), 10. 40 (s, 1 H), 8.43 (t, 1 H), 7.72 (d, 2H), 7.69 (d, 2H), 7.35 (d, 2H), 7.30 (d, 2H), 7.28 (d, 2H), 7.18 (d, 2H), 4. 02 (m, 1H), 3.40 (m, 2H), 3.00 (dd, 1 H), 2.46 (m, 3H), 1.85-1. 13 (m, 10H).

The following two compounds (examples 116 and 117) were prepared according to general procedure (I) except that the hydrogenation step (step 2) was omitted.

Example 116 3-{4-[2-(4-tert-Butylphenylcarbamoyl)-2-(4-trifluoromethoxyp henyl)vinyl]benzoylamino}- propionic acid

'H NMR (DMSO-d6) : # 12.22 (br s, 1 H), 10.10 (s, 1H), 8.50 (t, 1H), 7.69-7. 10 (m, 13H), 3.43 (q, 2H), 2.47 (t, 2H), 1.29 (s, 9H).

Example 117 3-{4-[2-(4-tert-Butylphenylcarbamoyl)-2-(4-trifluoromethoxyp henyl)vinyl]benzoylamino}2R- hydroxy-propionic acid

'H NMR (DMSO-d6) : a 10.10 (s, 1H), 8.50 (t, 1H), 7.72-7. 12 (m, 13H), 4.12 (t, 1H), 3.55 (m, 1 H), 1.28 (s, 9H).

The following preferred compounds are within the scope of the invention and may be pre- pared according to the procedures disclosed herein.: wherein

Furthermore, the following compounds are within the scope of the present invention and may be prepared according to the procedures disclosed herein. Intermediates that are not commercially available may be prepared similar to procedures described in WO 00/69810:

PHARMACOLOGICAL METHODS In the following section binding assays as well as functional assays useful for evalu- ating the efficiency of the compounds of the invention are described.

Binding of compounds to the glucagon receptor may be determined in a competition binding assay using the cloned human glucagon receptor.

Antagonism may be determined as the ability of the compounds to inhibit the amount of cAMP formed in the presence of 5 nM glucagon.

Glucagon Binding Assay (I) Receptor binding are assayed using cloned human receptor (Lok et al., Gene 140, 203-209 (1994) ). The receptor inserted in the pLJ6'expression vector using EcoRI/SSt1 restric- tion sites (Lok et al.) is expressed in a baby hamster kidney cell line (A3 BHK 570-25). Clones are selected in the presence of 0.5 mg/mL G-418 and are shown to be stable for more than 40 passages. The Kd is shown to be 0.1 nM.

Plasma membranes are prepared by growing cells to confluence, detaching them from the surface and resuspending the cells in cold buffer (10 mM tris/HCI, pH 7.4 containing 30 mM NaCI, 1 mM dithiothreitol, 5 mg/l leupeptin (Sigma), 5 mg/l pepstatin (Sigma), 100 mg/l ba- citracin (Sigma) and 15 mg/l recombinant aprotinin (Novo Nordisk A/S) ), homogenization by two 10-s bursts using a Poltron PT 10-35 homogenizer (Kinematica), and centrifugation upon a layer of 41 w/v % sucrose at 95.000 x g for 75 min. The white band located between the two

layers is diluted in buffer and centrifuged at 40.000 x g for 45 min. The precipitate containing the plasma membranes is suspended in buffer and stored at-80 °C until use.

Glucagon is iodinated according to the chloramine T method (Hunter and Greenwood, Nature 194,495 (1962) ) and purified using anion exchange chromatography (Jorgensen et al., Hormone and Metab. Res. 4,223-224 (1972). The specific activity is 460 uCi/ug on the day of iodination. Tracer is stored at-18 °C in aliquots and used immediately after thawing.

Binding assays are carried out in triplicate in filter microtiter plates (MADV N65, Milli- pore). The buffer is 50 mM HEPES, 5 mM EGTA, 5 mM MgCI2, 0.005% tween 20, pH 7.4. Glu- cagon is dissolved in 0.05 M HCI, added an equal amount (w/w) of human serum albumin and freeze-dried. On the day of use, it is dissolved in water and diluted in buffer to the desired con- centrations.

Test compounds are dissolved and diluted in DMSO. 140 uI buffer, 25 lli glucagon or buffer, and 10 aI DMSO or test compound are added to each well. Tracer (50.000 cpm) is di- luted in buffer and 25 gl is added to each well. 1-4 gg freshly thawed plasma membrane protein diluted in buffer is then added in aliquots of 25 tl to each well. Plates are incubated at 30 °C for 2 hours. Non-specific binding is determined with 10 M of glucagon. Bound tracer and unbound tracer are then separated by vacuum filtration (Millipore vacuum manifold). The plates are washed with 2 x 100 il buffer/well. The plates are air dried for a couple of hours, whereupon the filters are separated from the plates using a Millipore Puncher. The filters are counted in a gamma counter.

Functional Assay (I) The functional assay is carried out in 96 well microtiter plates (tissue culture plates, Nunc). The resulting buffer concentrations in the assay are 50 mM tris/HCI, 1 mM EGTA, 1.5 mM MgS04, 1.7 mM ATP, 20 M GTP, 2 mM IBMX, 0.02% tween-20 and 0.1% human serum albumin. pH was 7.4. Glucagon and proposed antagonist are added in aliquots of 35 ; I diluted in 50 mM tris/HCI, 1 mM EGTA, 1.85 mM MgS04, 0.0222% tween-20 and 0. 111% human se- rum albumin, pH 7.4. 20 uI of 50 mM tris/HCI, 1 mM EGTA, 1.5 mM MgS04, 11.8 mM ATP, 0.14 mM GTP, 14 mM IBMX and 0. 1% human serum albumin, pH 7.4 was added. GTP was dis- solved immediately before the assay.

50 lli containing 5 p. g of plasma membrane protein was added in a tris/HCI, EGTA, MgS04, human serum albumin buffer (the actual concentrations are dependent upon the con- centration of protein in the stored plasma membranes).

The total assay volume is 140 jli. The plates are incubated for 2 hours at 37 °C with continuous shaking. Reaction is terminated by addition of 25 PI 0.5 N HCI. cAMP is measured by the use of a scintillation proximity kit (Amersham).

Glucagon Binding Assay (II) BHK (baby hamster kidney cell line) cells are transfected with the human glucagon receptor and a membrane preparation of the cells is prepared. Wheat Germ Agglutinin deri- vatized SPA beads containing a scintillant (WGA beads) (Amersham) bound the membranes.

123I-glucagon bound to human glucagon receptor in the membranes and excited the scintil- lant in the WGA beads to light emission. Glucagon or samples binding to the receptor com- peted with'251-glucagon.

All steps in the membrane preparation are kept on ice or performed at 4 °C. BHK cells are harvested and centrifuged. The pellet is resuspended in homogenisation buffer (25 mM HEPES, pH = 7.4, 2.5 mM CaCI2, 1. 0 mM MgCl2, 250 mg/l bacitracin, 0.1 mM Pefabloc), homogenised 2 x 10 sec using Poltron 10-35 homogenizer (Kinematica) and added the same amount of homogenisation buffer as used for resuspension. After centrifugation (15 min at 2000 x g) the supernatant is transferred to cold centrifuge tubes and centrifuged for 45 min at 40.000 x g. The pellet is resuspended in homogenisation buffer, homogenised 2 x 10 sec (Polytron) and additional homogenisation buffer is added. The suspension is centrifuged for 45 min at 40.000 x g and the pellet is resuspended in resuspension buffer (25 mM HEPES, pH = 7.4, 2.5 mM Cal2, 1. 0 mM MgCl2) and homogenised 2 x 10 sec. (Polytron).

The protein concentration is normally around 1.75 mg/mL. Stabilisation buffer (25 mM HEPES, pH = 7.4, 2.5 mM Cal2, 1. 0 mM MgCI2, 1% bovine serum albumin, 500 mg/l ba- citracin, 2.5 M sucrose) is added and the membrane preparation is stored at-80 °C.

The glucagon binding assay is carried out in opti plates (Polystyrene Microplates, Packard). 50 NI assay buffer (25 mM HEPES, pH = 7.5, 2.5 mM CaCl2, 1. 0 mM MgClz, 0.003% Tween-20,0. 005% bacitracin, 0.05% sodium azide) and 5 NI glucagon or test com- pound (in DMSO) are added to each we ! i. 50 ui tracer (t251-porcine glucagon, 50.000 cpm) and 50 NI membranes (7. 5 æg) containing the human glucagon receptor are then added to the wells. Finally 50 NI WGA beads containing 1 mg beads are transferred to the well. The opti plates are incubated for 4 hours on a shaker and then settled for 8-48 hours. The opti plates are counted in a Topcounter. Non-specific binding is determined with 500 nM of glu- cagon.

Most of the compounds according to the examples showed ICso values below 1000 nM when tested in the glucagon binding assay (II).

GIP Binding Assay BHK (baby hamster kidney cell line) cells are transfected with the human GIP recep- tor and a membrane preparation of the cells is prepared. Wheat Germ Agglutinin derivatized SPA beads containing a scintillant (WGA beads) (Amersham) bound the membranes.

'25l-GIP bound to human GIP receptor in the membranes and excited the scintillant in the WGA beads to light emission. GIP or samples binding to the receptor competed with 1251-GIP.

All steps in the membrane preparation are kept on ice or performed at 4 °C. BHK cells are harvested and centrifuged. The pellet is resuspended in homogenisation buffer (25 mM HEPES, pH = 7.4, 2.5 mM CaCl2, 1. 0 mM MgCl2, 250 mg/l bacitracin, 0.1 mM Pefabloc), homogenised 2 x 10 sec using Poltron 10-35 homogenizer (Kinematica) and added the same amount of homogenisation buffer as used for resuspension. After centrifugation (15 min at 2000 x g) the supernatant is transferred to cold centrifuge tubes and centrifuged for 45 min at 40.000 x g. The pellet is resuspended in homogenisation buffer, homogenised 2 x 10 sec (Polytron) and additional homogenisation buffer is added. The suspension is centrifuged for 45 min at 40.000 x g and the pellet is resuspended in resuspension buffer (25 mM HEPES, pH = 7. 4, 2.5 mM Cal2, 1.0 mM MgClz) and homogenised 2 x 10 sec. (Polytron).

The protein concentration is normally around 1.75 mg/mL. Stabilisation buffer (25 mM HEPES, pH = 7. 4, 2.5 mM Cab, 1. 0 mM MgCI2, 1% bovine serum albumin, 500 mg/l ba- citracin, 2.5 M sucrose) is added and the membrane preparation is stored at-80 °C.

The GIP binding assay is carried out in opti plates (Polystyrene Microplates, Pack- ard). 50 NI assay buffer (25 mM HEPES, pH = 7.5, 2.5 mM CaCl2, 1. 0 mM MgCl2, 0.003% Tween-20, 0.005% bacitracin, 0.05% sodium azide) and 5 ul GIP or test compound (in DMSO) are added to each well. 50 NI tracer ('251-porcine GIP, 50.000 cpm) and 50 NI mem- branes (20 ug) containing the human GIP receptor are then added to the wells. Finally 50 NI WGA beads containing 1 mg beads are transferred to the well. The opti plates are incubated for 3.5 hours on a shaker and then settled for 8-48 hours. The opti plates are counted in a Topcounter. Non-specific binding is determined with 500 nM of GIP.

Generally, the compounds show a higher affinity for the glucagon receptor compared to the GIP receptor.