Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
POLYMERS CARRYING HYDROXYL GROUPS AND ESTER GROUPS AND METHOD FOR THE PRODUCTION THEREOF
Document Type and Number:
WIPO Patent Application WO/2012/089298
Kind Code:
A2
Abstract:
The invention relates to polymers carrying ester/hydroxyl groups, containing repetitive structural units of formulae (I) and (II) in a block-wise, alternating or statistical sequence, wherein D represents a direct bond between the polymer backbone and the hydroxyl group, a C1-to C6-alkene group, a C5- to C12-arylene group, an oxyalkene group of formula -O-R2-, an ester group of formula -C(O)-O-R2- or an amide group of formula -C(O)-N(R3)R2-, E represents a hydrocarbon group having 1 to 50 C-atoms, R2 represents a C2- to C10-alkene group, R3 represents hydrogen or a C1- to C10-alkyl group, which can carry substituents, k represents a number between 1 and 1000, n represents a number from 0 to 4999, m represents a number from 1 to 5000, and n+m represents a number between 10 to 5000, under the proviso that a) the molar portion of the structural units (I) on the polymer is between 0 and 99.9 mol-%, and b) the molar portion of the structural units (II) on the polymer is between 0.1 and 100 mol-% of the repetitive units. The invention also relates to a method for the production of said polymers using microwaves.

Inventors:
KRULL MATTHIAS (DE)
MORSCHHAEUSER ROMAN (DE)
SCHOLZ HANS JUERGEN (DE)
STOCK JOCHEN (DE)
Application Number:
PCT/EP2011/006174
Publication Date:
July 05, 2012
Filing Date:
December 08, 2011
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CLARIANT INT LTD (CH)
KRULL MATTHIAS (DE)
MORSCHHAEUSER ROMAN (DE)
SCHOLZ HANS JUERGEN (DE)
STOCK JOCHEN (DE)
International Classes:
C08F8/14
Domestic Patent References:
WO2003016359A22003-02-27
WO1994018243A21994-08-18
Foreign References:
US2601561A1952-06-24
CN1749279A2006-03-22
Other References:
CHEM. ENG., 16 January 2010 (2010-01-16)
Attorney, Agent or Firm:
MIKULECKY, Klaus et al. (DE)
Download PDF:
Claims:
Patentansprüche:

1. Ester Hydroxylgruppen tragender Polymere, enthaltend repetitierende Struktureinheiten der Formeln (I) und (II) in blockweiser, alternierender oder statistischer Abfolge

worin

D für eine direkte Bindung zwischen Polymerrückgrat und Hydroxylgruppe, eine Crbis Ce-Alkylengruppe, eine C5- bis Ci2-Arylengruppe, eine Oxyalkylengruppe der Formel -O-R2-, eine Estergruppe der Formel -C(O)-O-R2- oder eine Amidgruppe der Formel -C(O)-N(R3)R2-, E für einen Kohlenwasserstoffrest mit 1 bis 50 C-Atomen

R2 für einen C2- bis Cio-Alkylenrest,

R3 für Wasserstoff oder einen C bis Cio-Alkylrest, der Substituenten tragen kann,

k für eine Zahl zwischen 1 und 1.000,

n für eine Zahl von 0 bis 4999,

m für eine Zahl von 1 bis 5000,

n+m für eine Zahl von 10 bis 5000 stehen, mit der Maßgabe, dass a) der molare Anteil der Struktureinheiten (I) am Polymer zwischen 0 und 99,9 mol-%, und

b) der molare Anteil der Struktureinheiten (II) am Polymer zwischen 0,1 und 100 mol-% der repetitierenden Einheiten beträgt.

2. Ester Hydroxylgruppen tragender Polymere nach Anspruch 1 , welche neben den Struktureinheiten der Formel (I) zusätzliche, von weiteren ethylenisch ungesättigten Monomeren abgeleitete Struktureinheiten umfasst. 3. Ester Hydroxylgruppen tragender Polymere nach Anspruch 1 und/oder 2, bei dem sich die Struktureinheiten der Formel (I) vom Vinylalkohol ableiten.

4. Ester Hydroxylgruppen tragender Polymere nach einem oder mehreren der Ansprüche 1 bis 3, welche zusätzlich zu den Struktureinheiten der Formel (I) und (II) auch von Vinylacetat abgeleitete Struktureinheiten umfasst.

5. Ester Hydroxylgruppen tragender Polymere nach einem oder mehreren der Ansprüche 1 bis 4, bei dem E für einen Kohlenwasserstoffrest mit 2 bis

30 C-Atomen steht.

6. Ester Hydroxylgruppen tragender Polymere nach einem oder mehreren der Ansprüche 1 bis 5, bei dem E für einen Alkylenrest steht.

7. Ester Hydroxylgruppen tragender Polymere nach einem oder mehreren der Ansprüche 1 bis 6, bei dem k=1 ist.

8. Ester Hydroxylgruppen tragender Polymere nach einem oder mehreren der Ansprüche 1 bis 6 bei dem die Struktureinheiten der Formel (II) polykondensierte Hydroxycarbonsäuren enthalten, und k > 3 ist.

9. Ester Hydroxylgruppen tragender Polymere nach Anspruch 8, bei dem sich die in den Struktureinheiten der der Formel (II) enthaltenen polykondensierten Hydroxycarbonsäuren von Hydroxycarbonsäuren der Formel (III) und/oder Hydroxycarbonsäureestern der Formel (IV) ableiten

HO-E-COOH (III) HO-E-COOR5 (IV) worin R5für einen CrC4-Alkylrest steht.

10. Verfahren zur Herstellung von Estern, enthaltend repetitierende

Struktureinheiten der Formeln (I) und (II) in blockweiser, alternierender oder statistischer Abfolge

worin

D für eine direkte Bindung zwischen Polymerrückgrat und Hydroxylgruppe, eine Crbis C6-Alkylengruppe, eine C5- bis Ci2-Arylengruppe, eine

Oxyalkylengruppe der Formel -O-R2-, eine Estergruppe der Formel -C(O)-O-R2- oder eine Amidgruppe der Formel -C(O)-N(R3)R2-,

E für einen Kohlenwasserstoffrest mit 2 bis 50 C-Atomen

R2 für einen C2- bis C-io-Alkylenrest,

R3 für Wasserstoff oder einen C bis C-io-Alkylrest, der Substituenten tragen kann,

k für eine Zahl zwischen 1 und 1.000,

n für eine Zahl von 0 bis 4999,

m für eine Zahl von 1 bis 5000,

n+m für eine Zahl von 10 bis 5000 stehen, mit der Maßgabe, dass der molare Anteil der Struktureinheiten (I) am Polymer zwischen 0 und 99,9 mol-%, und

der molare Anteil der Struktureinheiten (II) am Polymer zwischen 0,1 und 100 mol-% der repetitierenden Einheiten beträgt, indem Hydroxylgruppen tragende Polymere A), die die repetitierende

Struktureinheit der Formel (I) enthalten, mit Hydroxycarbonsäuren B1) der Formel (III) oder Hydroxycarbonsäureestern B2) der Formel (IV)

HO-E-COOH (III) HO-E-COOR5 (IV) worin R5für einen CrC4-Alkylrest steht, in Gegenwart von Wasser mit Mikrowellen bestrahlt werden, wobei das Reaktionsgemisch durch die Mikrowellenbestrahlung auf Temperaturen oberhalb 100 °C erhitzt wird.

11. Verfahren nach Anspruch 10, wobei das Polymer A) neben den

Struktureinheiten der Formel (I) zusätzliche, von weiteren ethylenisch

ungesättigten Monomeren abgeleitete Struktureinheiten umfasst.

12. Verfahren nach Anspruch 10 und/oder 11 , wobei sich die Struktureinheiten der Formel (I) vom Vinylalkohol ableiten.

13. Verfahren nach Anspruch 11 und/oder 12, wobei das Polymer A) zusätzlich zu den Struktureinheiten der Formel (I) auch von Vinylacetat abgeleitete

Struktureinheiten umfasst. 14 . Verfahren nach einem oder mehreren der Ansprüche 10 bis 13, bei dem die Carbonsäure B1) oder der Carbonsäureester B2) ein Gemisch aus mindestens einer Carbonsäure und mindestens einer Dicarbonsäure oder ein Gemisch aus mindestens einem Carbonsäureester und mindestens einem Dicarbonsäureester sind.

15. Verfahren nach einem oder mehreren der Ansprüche 10 bis 14, bei dem das zur Umsetzung eingesetzte Reaktionsgemisch 5 bis 98 Gew.-% Wasser enthält. 16. Verfahren nach einem oder mehreren der Ansprüche 10 bis 14, bei dem das zur Umsetzung eingesetzte Reaktionsgemisch 5 bis 98 Gew.-% eines

Gemischs aus Wasser und einem oder mehreren mit Wasser mischbaren organischen Lösemitteln enthält.

17. Verfahren nach Anspruch 16, bei dem der Anteil des mit Wasser

mischbarem, organischen Lösemittel am Lösemittelgemisch zwischen 1 und 75 Gew.-% liegt.

18. Verfahren nach einem oder mehreren der Ansprüche 10 bis 17, bei dem das Reaktionsgemisch mittels Mikrowellenstrahlung auf Temperaturen zwischen 110 und 280 °C erhitzt wird. 19. Verfahren nach einem oder mehreren der Ansprüche 10 bis 18, bei dem Estergruppen tragende Comonomereinheiten des Polymers A) mit

Hydroxycarbonsäuren B1) oder Hydroxycarbonsäureestem B2) umgeestert werden. 20. Verfahren nach einem oder mehreren der Ansprüche 10 bis 19, bei dem die Mikrowellenbestrahlung in einem Strömungsrohr aus mikrowellentransparentem, hochschmelzendem Material erfolgt.

21. Verfahren nach einem oder mehreren der Ansprüche 10 bis 20, bei dem sich die Längsachse des Reaktionsrohres in der Ausbreitungsrichtung der

Mikrowellen in einem Monomode-Mikrowellenapplikator befindet.

22. Verfahren nach einem oder mehreren der Ansprüche 10 bis 21 , bei dem der Mikrowellenapplikator als Hohlraumresonator ausgeformt ist.

Description:
Beschreibung

Hydroxylgruppen und Estergruppen tragende Polymere und Verfahren zu ihrer Herstellung

Die vorliegende Erfindung betrifft Hydroxylgruppen und Estergruppen tragende Polymere und ein Verfahren zu ihrer Herstellung durch polymeranaloge

Veresterung wässriger Lösungen Hydroxylgruppen tragender Additionspolymere im Mikrowellenfeld.

Höhermolekulare synthetische Polymere, die eine Vielzahl an Hydroxylgruppen tragen, wie beispielsweise Poly(vinylalkohol), sind nichtionische, wasserlösliche, thermoplastische Kunststoffe, die oberhalb ihres Schmelzpunkts in hochviskose Massen übergehen. Die Wasserlöslichkeit der Polymere ist dabei unter anderem von der Konzentration an Hydroxylgruppen im Polymer abhängig und im speziellen Fall des Poly(vinylalkohols) auch eine Funktion des Hydrolysegrades des zu seiner Herstellung eingesetzten Poly(vinylacetats). So ist beispielsweise Poly(vinylalkohol) mit hohem Hydrolysegrad hoch kristallin und nur in heißem Wasser löslich. Poly(vinylalkohol) hat interessante physikochemische

Eigenschaften wie Schicht- und Filmbildung, Emulgierverhalten und Adhäsion, die ihn für eine Vielzahl technischer Applikationen interessant machen. Weiterhin hat er eine hohe Zugfestigkeit, die jedoch mit steigendem Feuchtigkeitsgehalt wie zum Beispiel bei steigender Luftfeuchtigkeit einer zunehmenden Elastizität weicht, was sich beispielsweise in einer stärkeren Dehnbarkeit von Filmen bemerkbar macht.

Durch chemische Modifizierung können die Eigenschaften Hydroxylgruppen tragender Polymere in weiten Grenzen beeinflusst werden. So kann

beispielsweise durch hydrophobe Modifizierung ihre Widerstandsfähigkeit gegenüber Chemikalien und Lösemitteln wie auch ihre Temperaturstabilität verbessert werden. Andererseits bleibt beispielsweise bei Poly(vinylalkohol) nach hydrophober Modifizierung die Zugfestigkeit auch bei hoher Luftfeuchtigkeit erhalten, ohne dass die Wasserlöslichkeit verloren geht. Für verschiedene Anwendungen, zum Beispiel für temporäre Oberflächenbeschichtungen, wären insbesondere in kaltem Wasser besser lösliche Polyvinylalkohole mit erhöhter Zugfestigkeit von Vorteil, da sie die Oberflächen besser vor mechanischen

Beschädigungen schützen würden, anschließend aber leicht mit kaltem Wasser zu entfernen wären. Andererseits sollte dabei die Lösungsviskosität der Polymere nicht nennenswert steigen, um die Anwendung mit vorhandenen Techniken vornehmen zu können. Über die gebräuchlichen Methoden zur Derivatisierung von Polyvinylalkohol wie beispielsweise die Acetalisierung mit Aldehyden ist das gewünschte Eigenschaftsprofil nicht einstellbar. Wünschenswert wäre die Modifizierung von wasserlöslichen, Hydroxylgruppen tragenden und damit nichtionischen Polymeren mit wiederum Hydroxylgruppen enthaltenden Seitenketten, die über sterische Effekte die Kristallinität des

Basispolymers absenken, ohne dessen Wasserlöslichkeit entscheidend zu vermindern. Eine dafür geeignete Methode wäre beispielsweise die Veresterung mit Hydroxycarbonsäuren. Bei der Veresterung bereitet die geringe Löslichkeit von Hydroxylgruppen tragenden Polymeren in organischen Lösemitteln erhebliche präparative Schwierigkeiten bei der Umsetzung und insbesondere bei der

Herstellung homogener Produkte. Für polymeranaloge Reaktionen muss das umzusetzende Polymer zur Gewährleistung einer homogenen Umsetzung in eine lösliche oder zumindest gequollene Form gebracht werden. Ist das Polymer im Reaktionsmedium unlöslich, sind nur Oberflächenreaktionen möglich; ist das Polymer im Reaktionsmedium gequollen, hängt die Reaktionsgeschwindigkeit von der Zugänglichkeit der funktionellen Gruppen in den Poren der Polymermatrix ab. In partiell kristallinen Polymeren finden zudem Reaktionen praktisch nur in den amorphen Bereichen statt, da Diffusionsvorgänge im kristallinen Bereich sehr langsam sind.

Hydroxylgruppen tragende Polymere wie beispielsweise Poylvinylalkohol sind in lösmittelfreier Form Feststoffe oder hoch viskose Massen, die für homogene chemische Umsetzungen entweder thermisch oder mittels Lösemittel fluidisiert werden müssen. Bevorzugtes Lösemittel für die meisten Hydroxylgruppen tragenden Polymere ist Wasser. Für Kondensationsreaktionen ist Wasser als Lösemittel aber üblicherweise weniger geeignet, da es das Reaktionsgleichgewicht zu Gunsten der Edukte verschiebt. Zwar lassen sich solche Polymere wie beispielsweise Poly(vinylalkohol) üblicherweise auch in polaren aprotischen Lösemitteln wie beispielsweise Dimethylsulfoxid, Formamid, Dimethylformamid und Phosphorsäuretrisdimethylamid lösen. Beim Entfernen dieser hochsiedenden Lösemittel nach erfolgter Umsetzung erleidet das Polymer üblicherweise thermische Schädigungen, was sie für eine weitere Verwendung vielfach unbrauchbar macht.

Der Herstellung entsprechender (Co)polymere durch (Co)polymerisation von beispielsweise Vinylacetat mit Hydroxylgruppen tragenden Monomeren sind ebenfalls Grenzen gesetzt, da geeignete Monomere wie beispielsweise

Hydroxyalkylvinylester oder Hydroxyalkylacrylate technisch nur begrenzt zugänglich und in den meisten Fällen sehr teuer sind. Zudem werden bei der nachfolgend erforderlichen Hydrolyse der Acylgruppen zu Hydroxylgruppen auch die Estergruppen der Comonomere zumindest partiell hydrolysiert.

Gemäß Stand der Technik ist eine polymeranaloge Veresterung Hydroxylgruppen tragender Polymere mit hydrophoben, langkettigen Carbonsäuren mit reaktiven Säurederivaten wie beispielsweise Säureanhydriden oder Säurechloriden möglich. Dabei entstehen jedoch mindestens equimolare Mengen an Carbonsäuren bzw. Salzen, die abzutrennen und zu entsorgen bzw. aufzuarbeiten sind und hohe Kosten verursachen. Da Hydroxylgruppen tragende Polymere wie beispielsweise Poly(vinylalkohol) im Wesentlichen nur in Wasser löslich sind, entstehen dabei durch Reaktion des reaktiven Säurederivats mit Wasser weitere unerwünschte Nebenprodukte. Entsprechende reaktive Säurederivate von Hydroxylgruppen tragenden Carbonsäuren wie beispielsweise Säurechloride oder -anhydride von Hydroxycarbonsäuren sind chemisch nicht beständig, so dass derartige

polymeranaloge Modifizierungen nicht zugänglich sind. Eine Veresterung Hydroxylgruppen tragender Polymere mit freien Carbonsäuren auf direktem Wege ist weiterhin aufgrund der unterschiedlichen Viskositäten von Polymeren und Säuren sowie der Unlöslichkeit der Polymere in organischen Lösemitteln andererseits problematisch. Gemäß US-2601561 gelingt die Veresterung von Poly(vinylalkohol) mit, bezogen auf die Hydroxylgruppen, mindestens equimolaren Mengen an ethylenisch ungesättigten Carbonsäuren mit mindestens 14 C-Atomen in Lösemitteln wie Phenol, Kresol oder Xylenol. Dabei erfordert die Veresterung Temperaturen zwischen 150 und 250 °C und dauert 2 bis 5 Stunden. Die dabei erhaltenen Produkte sind intensiv braun gefärbt und enthalten einerseits hochmolekulare vernetzte Anteile und andererseits

niedermolekulare Abbauprodukte. Auch nach Aufarbeitung enthalten sie noch Restmengen der schwer flüchtigen, toxikologisch bedenklichen Lösemittel.

Ein neuerer Ansatz zur chemischen Synthese sind Reaktionen im Mikrowellenfeld. Dabei wird oftmals eine deutliche Beschleunigung der Reaktionen beobachtet, was diese Verfahren ökonomisch wie auch ökologisch sehr interessant macht. So sind im Stand der Technik verschiedene Veresterungen von Kohlenhydraten offenbart, die fast ausnahmslos mit Fettsäureestern, die eine höhere Reaktivität als die freien Fettsäuren besitzen, durchgeführt wurden und trotzdem nur zu sehr geringen Acylierungsgraden führen. CN-1749279 lehrt, dass bei der Umsetzung von Kohlenhydraten mit Säuren bei erhöhter Temperatur gleichzeitig ein Abbau des Polymers stattfindet, was abhängig vom eingesetzten Rohstoff und den gewählten Reaktionsbedingungen zu Produkten mit stark schwankenden

Eigenschaften führt.

Chem. Eng. 2010, January, 16 offenbart die Herstellung von Poly(milchsäure) unter Mikrowellenbestrahlung wässriger Milchsäurelösungen. Poly(milchsäure) ist jedoch ein in Wasser unlöslicher Thermoplast, der das gesuchte Eigenschaftsprofil nicht zeigt.

Es bestand folglich die Aufgabe, eine Methode zur polymeranalogen Modifizierung Hydroxylgruppen tragender Hauptkettenpolymere mit Hydroxyalkylseitenketten bereitzustellen, mit der die Eigenschaften solcher nichtionischen wasserlöslichen Polymere auf einfache und preiswerte Weise in technisch interessanten Mengen modifiziert werden können. Von besonderem Interesse ist dabei die Veresterung von sekundäre Hydroxylgruppen tragenden linearen Additionspolymeren und insbesondere von sekundäre Hydroxylgruppen tragenden linearen Additionspolymeren mit nur aus C-C-Bindungen aufgebautem Rückgrat.

Insbesondere soll die Zugfähigkeit der Polymere erhöht werden bei gleichzeitiger Verbesserung ihrer Löslichkeit insbesondere in kaltem Wasser. Darüber hinaus soll die Lösungsviskosität der Polymere nicht signifikant von der Viskosität der zugrunde liegenden Polymere abweichen, um sie auf vorhandenen Maschinen mit bekannter Technologie anwenden zu können. Zur Erzielung konstanter

Produkteigenschaften sowohl innerhalb eines Reaktionsansatzes wie auch zwischen verschiedenen Reaktionsansätzen soll die Modifizierung dabei möglichst homogen, das heißt in statistischer Verteilung über das gesamte Polymer erfolgen. Weiterhin sollen dabei keine Reaktionen am Polymerrückgrat wie insbesondere ein Polymerabbau stattfinden und es sollen keine nennenswerten Mengen an toxikologisch und/oder ökologisch bedenklichen Nebenprodukten entstehen. Überraschenderweise wurde gefunden, dass sich höhermolekulare,

Hydroxylgruppen tragende Polymere in wässriger Lösung und/oder in Lösungen aus Wasser und mit Wasser mischbaren organischen Lösemitteln mit

Hydroxycarbonsäuren unter dem Einfluss von Mikrowellen bei Temperaturen oberhalb 100 °C verestern lassen. Auf diese Weise lässt sich die Zugfestigkeit Hydroxylgruppen tragender Polymere deutlich erhöhen bei gleichzeitiger

Verbesserung der Löslichkeit in kaltem Wasser. Die Löslichkeit derartig

modifizierter Polymere gibt keine Hinweise auf das Vorhandensein größerer hydrophiler bzw. hydrophober Polymerblöcke. Da eine Vielzahl verschiedener Hydroxycarbonsäuren preiswert und in technischen Mengen zugänglich ist, lassen sich auf diese Weise die Eigenschaften besagter Polymere in weiten Grenzen modifizieren. Dabei kommt es nicht zum Abbau der Polymerketten.

Gegenstand der Erfindung sind dementsprechend Ester Hydroxylgruppen tragender Polymere, enthaltend repetitierende Struktureinheiten der Formeln (I) und (II) in blockweiser, alternierender oder statistischer Abfolge

worin

D für eine direkte Bindung zwischen Polymerrückgrat und Hydroxylgruppe, eine Ci-bis C ö -Alkylengruppe, eine C5- bis C^-Arylengruppe, eine

Oxyalkylengruppe der Formel -O-R 2 -, eine Estergruppe der Formel -C(0)-0-R 2 - oder eine Amidgruppe der Formel -C(0)-N(R 3 )R 2 - E für einen Kohlenwasserstoffrest mit 1 bis 50 C-Atomen

R 2 für einen C 2 - bis C 0 -Alkylenrest,

R 3 für Wasserstoff oder einen C bis Ci 0 -Alkylrest, der Substituenten tragen kann,

k für eine Zahl zwischen 1 und 1.000,

n für eine Zahl von 0 bis 4999,

m für eine Zahl von 1 bis 5000,

n+m für eine Zahl von 10 bis 5000 stehen, mit der Maßgabe, dass der molare Anteil der Struktureinheiten (I) am Polymer zwischen 0 und 99,9 mol-%, und

der molare Anteil der Struktureinheiten (II) am Polymer zwischen 0,1 und 100 mol-% der repetitierenden Einheiten beträgt.

Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Estern Hydroxylgruppen tragender Polymere, enthaltend repetitierende

Struktureinheiten der Formeln (I) und (II) in blockweiser, alternierender oder statistischer Abfolge

worin

D für eine direkte Bindung zwischen Polymerrückgrat und Hydroxylgruppe, eine C bis C 6 -Alkylengruppe, eine C 5 - bis C^-Arylengruppe, eine

Oxyalkylengruppe der Formel -O-R 2 -, eine Estergruppe der Formel -C(0)-0-R 2 - oder eine Amidgruppe der Formel -C(0)-N(R 3 )R 2 -,

E für einen Kohlenwasserstoffrest mit 1 bis 50 C-Atomen

R 2 für einen C 2 - bis Ci 0 -Alkylenrest,

R 3 für Wasserstoff oder einen C bis C 10 -Alkylrest, der Substituenten tragen kann,

k für eine Zahl zwischen 1 und 1.000,

n für eine Zahl von 0 bis 4999,

m für eine Zahl von 1 bis 5000,

n+m für eine Zahl von 10 bis 5000 stehen, mit der Maßgabe, dass der molare Anteil der Struktureinheiten (I) am Polymer zwischen 0 und 99,9 mol-%, und

der molare Anteil der Struktureinheiten (II) am Polymer zwischen 0,1 und 100 mol-% der repetitierenden Einheiten beträgt, indem Hydroxylgruppen tragende Polymere A), die die repetitierende

Struktureinheit der Formel (I) enthalten, mit Hydroxycarbonsäuren B1 ) der Formel (III) oder Hydroxycarbonsäureestern B2) der Formel (IV)

HO-E-COOH (III) HO-E-COOR 5 (IV) worin R 5 für einen C C 4 -Alkylrest steht, in Gegenwart von Wasser mit Mikrowellen bestrahlt werden, wobei das Reaktionsgemisch durch die Mikrowellenbestrahlung auf Temperaturen oberhalb 100 °C erhitzt wird.

Ein weiterer Gegenstand der Erfindung sind Ester Hydroxylgruppen tragender Polymere enthaltend repetitierende Struktureinheiten der Formeln (I) und (II) in blockweiser, alternierender oder statistischer Abfolge, hergestellt durch

Umsetzung Hydroxylgruppen tragender Polymere A), die repetitierende

Struktureinheiten der Formel (I) aufweisen, in Gegenwart von

Hydroxycarbonsäuren der Formel (III) oder Hydroxycarbonsäureestern der Formel (IV) und in Gegenwart von Wasser unter Bestrahlung mit Mikrowellen, wobei das Reaktionsgemisch durch die Mikrowellenbestrahlung auf Temperaturen oberhalb 100 °C erhitzt wird.

Bevorzugte Hydroxylgruppen tragende Polymere A) sind Hauptkettenpolymere, deren Polymerrückgrat nur aus C-C-Bindungen aufgebaut ist und das

dementsprechend keine Heteroatome enthält. Bevorzugte Hydroxylgruppen tragende Polymere A) können allerdings am Kettenende Gruppen mit

Heteroatomen enthalten, die beispielsweise während der Polymerisation durch den Initiator und/oder den Moderator in das Polymer gelangen. Bevorzugt enthält das Polymer A insgesamt mindestens 5, besonders bevorzugt mindestens 10, speziell mindestens 15 und insbesondere mindestens 20 Hydroxylgruppen tragende Monomereinheiten, d. h. n ist mindestens 5, 10, 15 oder 20. Diese Monomereinheiten können bei Copolymeren auch mit von anderen Monomeren abgeleiteten Struktureinheiten kombiniert oder durch diese unterbrochen sein.

D steht bevorzugt für eine direkte Bindung zwischen Polymerrückgrat und der Hydroxylgruppe in Formel I oder dem Sauerstoffatom in Formel II. Die

Struktureinheit der Formel (I) ist in diesem Fall vom Vinylalkohol abgeleitet. In einer weiteren bevorzugten Ausführungsform steht D für einen linearen oder verzweigten Alkylenrest. Dieser besitzt bevorzugt ein, zwei, drei oder vier

C-Atome. Hierbei handelt es sich beispielsweise um von Allylalkohol oder von 3-Buten-1-ol 3-Buten-1-ol, 1 -Penten-3-ol oder 4-Penten-1-ol abgeleitete

Struktureinheiten. In einer weiteren bevorzugten Ausführungsform steht D für eine Oxyalkylengruppe, in der R 2 bevorzugt für eine Alkylengruppe mit zwei, drei oder vier C-Atomen steht. Derartige Struktureinheiten (I) leiten sich bevorzugt von Hydroxyalkylvinylethern wie beispielsweise Hydroxyethylvinylether oder

Hydroxybutylvinylether ab. In einer weiteren bevorzugten Ausführungsform steht D für eine Estergruppe. Bevorzugt steht R 2 für eine Alkylengruppe mit 2 oder

3 C-Atomen. Derartige Struktureinheiten (I) leiten sich beispielsweise von

Hydroxyalkylestern der Acrylsäure und Methacrylsäure wie beispielsweise von Hydroxyethylacrylat, Hydroxyethylmethacrylat, Hydroxypropylacrylat und

Hydroxypropylmethacrylat ab. In einer weiteren bevorzugten Ausführungsform steht D für eine Amidgruppe, die über eine Gruppe R 2 mit der Hydroxylgruppe verbunden ist. Bevorzugt steht R 2 hier für eine Alkylgruppe mit 2 oder 3 C-Atomen. R 3 kann, sofern es für einen Alkylrest steht, Substituenten wie beispielsweise eine Hydroxylgruppe tragen. Bevorzugt steht R 3 für Wasserstoff, Methyl, Ethyl oder Hydroxyethyl. Derartige Struktureinheiten (I) leiten sich beispielsweise von

Hydroxyalkylamiden der Acrylsäure und Methacrylsäure wie beispielsweise von Hydroxyethylacrylamid, Hydroxyethylmethacrylamid, Hydroxypropylacrylamid, Hydroxypropylmethacrylamid ab. Auch mehrere wie beispielsweise zwei, drei, vier oder mehr verschiedene Struktureinheiten der Formel (I) enthaltende Polymere sind erfindungsgemäß geeignet. Das erfindungsgemäße Verfahren ist

insbesondere für die Veresterung sekundäre OH-Gruppen tragender Polymere geeignet.

Besonders bevorzugte Struktureinheiten der Formel (I) leiten sich vom

Vinylalkohol ab.

Das erfindungsgemäße Verfahren eignet sich auch zur Modifizierung von

Copolymeren Hydroxylgruppen tragender Monomere, die neben den

Hydroxylgruppen tragenden Einheiten der Formel (I) Strukturelemente besitzen, die von einem oder mehreren weiteren Monomeren abgeleitet sind, welche keine Hydroxylgruppen tragen. Bevorzugte weitere Monomere sind Olefine, Ester und Amide der Acrylsäure und Methacrylsäure, Vinylester, Vinylether, Vinylamine, Allylamine, und deren Derivate. Beispiele für bevorzugte Comonomere sind Ethen, Propen, Styrol, Methylacrylat, Methylmethacrylat sowie Ester der Acrylsäure und Methacrylsäure mit Alkoholen mit 2 bis 24 C-Atomen. Bevorzugt enthalten

Copolymere mehr als 10 mol-%, besonders bevorzugt 15 - 99,5 mol-%,

insbesondere 20 - 98 mol-%, speziell 50 - 95 mol-% wie beispielsweise

70 - 90 mol-% an Struktureinheiten (I), die sich von einem eine Hydroxylgruppe tragenden Monomer ableiten.

Beispiele für geeignete Copolymere A) sind Copolymere des Vinylalkohols mit Vinylestern wie insbesondere Copolymere des Vinylalkohols mit Vinylacetat wie sie beispielsweise durch partielle Verseifung von Polyvinylacetat zugänglich sind. Bevorzugt sind Copolymere die neben Vinylalkohol 0,5 bis 60 mol-% und besonders bevorzugt 1 bis 50 mol-% wie beispielsweise 1 ,5 bis 10 mol-%

Vinylacetat enthalten. Ausgehend von teilhydrolysiertem Poly(vinylacetat) lassen sich somit nach dem erfindungsgemäßen Verfahren auch Terpolymere aus Vinylacetat, Vinylalkohol und erfindungsgemäß mit einer Hydroxycarbonsäure der Formel (III) und/oder einem Carbonsäureester der Formel (IV) verestertem

Vinylalkohol herstellen. Des Weiteren können im Copolymer A) anwesende Estergruppen im erfindungsgemäßen Verfahren ganz oder teilweise umgeestert werden. Weitere Beispiele für weitere geeignete Copolymere A) sind Copolymere aus Vinylalkohol und Ethylen, Vinylalkohol und Styrolsowie Copolymere aus

Hydroxyethylmethacrylat und Methylmethacrylat.

Bevorzugte Copolymere A) sind in Wasser oder Lösemittelgemischen aus Wasser und mit Wasser mischbarem organischen Lösemittel bei Temperaturen oberhalb 40 °C wie beispielsweise bei 50 °C, 60 °C, 70 °C, 80 °C oder 90 °C homogen löslich oder zumindest quellbar. Weiterhin bevorzugt sind sie mit einer

Konzentration von mindestens 1 Gew.-% und insbesondere 5 bis 90 Gew.-% wie beispielsweise 20 bis 80 Gew.-% bei Temperaturen oberhalb 40 °C wie

beispielsweise bei 50 °C, 60 °C, 70 °C, 80 °C oder 90 °C homogen in Wasser oder Lösemittelgemischen aus Wasser und mit Wasser mischbarem organischen Lösemittel löslich bzw. quellbar. Besonders bevorzugte Hydroxylgruppen tragende Hauptkettenpolymere A) sind Poly(vinylalkohole). Unter Poly(vinylalkoholen) werden erfindungsgemäß sowohl Homopolymere des Vinylalkohols als auch Copolymere des Vinylalkohols mit anderen Monomeren verstanden. Besonders bevorzugte Copolymere sind solche, die 0,5 bis 20 mol-%, bevorzugt 1 bis 15 mol-% Vinylester enthalten. Diese werden üblicherweise durch Polymerisation bzw. Copolymerisation von Estern des Vinylalkohols mit niederen Carbonsäuren und anschließende Hydrolyse des Esters hergestellt. Bevorzugter Ester des Vinylalkohols ist Vinylacetat. Die

Hydrolyse der Polymere kann vollständig oder partiell erfolgen.

Weitere besonders bevorzugte Copolymere sind Copolymere aus Ethylen und Vinylalkohol. Speziell bevorzugt sind solche, die 15 - 70 mol-% und insbesondere 20 - 60 mol-% wie beispielsweise 25 - 50 mol-% von Ethylen abgeleitete

Struktureinheiten enthalten.

Das gewichtsmittlere Molekulargewicht M w bevorzugter Polymere A), bestimmt an acetylierten Proben mittels Gelpermeationschromatographie und statischer Lichtstreuung, liegt bevorzugt zwischen 10.000 und 500.000, speziell zwischen 12.000 und 300.000 und insbesondere zwischen 15.000 und 250.000 g/mol. Das Molekulargewicht der modifizierten Polymere ist entsprechend ihrem

Veresterungsgrad und dem Molekulargewicht des Acylrestes erhöht.

Als Hydroxycarbonsäuren B1 ) sind allgemein Verbindungen geeignet, die mindestens eine Carboxylgruppe und eine Hydroxylgruppe besitzen. So ist das erfindungsgemäße Verfahren ebenso zur Umsetzung von Hydroxycarbonsäuren mit beispielsweise zwei, drei, vier oder mehr Carboxylgruppen geeignet.

Bevorzugte Hydroxycarbonsäuren besitzen eine Carboxylgruppe. Das

erfindungsgemäße Verfahren ist weiterhin zur Umsetzung von

Hydroxycarbonsäuren mit beispielsweise zwei, drei, vier oder mehr

Hydroxylgruppen geeignet. Bevorzugte Hydroxycarbonsäuren besitzen eine

Hydroxylgruppe. Die Hydroxycarbonsäuren können natürlichen oder synthetischen Ursprungs sein. Besonders bevorzugt sind dabei solche Hydroxycarbonsäuren, die einen Kohlenwasserstoffrest E mit 2 bis 30 C-Atomen und insbesondere mit 3 bis 20 wie beispielsweise mit 4 bis 12 C-Atomen tragen. Der

Kohlenwasserstoffrest ist bevorzugt aliphatisch, zykloaliphatisch, aromatisch oder araliphatisch. Der Kohlenwasserstoffrest kann einen oder mehrere wie

beispielsweise zwei, drei, vier oder mehr weitere Substituenten wie beispielsweise Carboxyl, Hydroxyl-, Hydroxyalkyl-, Alkoxy- wie beispielsweise Methoxy-,

Poly(alkoxy)-, Poly(alkoxy)alkyl-, Amid-, Cyano-, Nitril- Nitro- und/oder

C5-C2o-Arylgruppen wie beispielsweise Phenylgruppen tragen mit der Maßgabe, dass die Substituenten unter den Reaktionsbedingungen stabil sind und keine Nebenreaktionen wie beispielsweise Eliminierungsreaktionen eingehen. Der Kohlenwasserstoffrest E kann auch Heteroatome wie beispielsweise Sauerstoff, Stickstoff, Phosphor und/oder Schwefel enthalten, bevorzugt jedoch nicht mehr als ein Heteroatom pro 2 C-Atome.

In einer bevorzugten Ausführungsform werden die Polymere A) mit aliphatischen Hydroxycarbonsäuren B1 ), das heißt mit Carbonsäuren, die mindestens eine Hydroxylgruppe an einem aliphatischen Kohlenwasserstoffrest E tragen, umgesetzt. Diese aliphatischen Kohlenwasserstoffreste können linear, verzweigt oder zyklisch sein. Die Carboxylgruppe kann an einem primären, sekundären oder tertiären C-Atom gebunden sein. Die Kohlenwasserstoffreste können gesättigt oder ungesättigt sein. Bevorzugt sind sie gesättigt. Ungesättigte

Kohlenwasserstoffreste enthalten eine oder mehrere und bevorzugt eine, zwei oder drei C=C-Doppelbindungen. Bevorzugt befinden sich etwaige

Doppelbindungen nicht in Konjugation zur Carboxylgruppe. In einer besonders bevorzugten Ausführungsform ist der aliphatische Kohlenwasserstoffrest ein unsubstituierter Alkylen- oder Alkenylenrest. In einer weiteren besonders bevorzugten Ausführungsform trägt der aliphatische Kohlenwasserstoffrest einen oder mehrere wie beispielsweise zwei, drei oder mehr der oben genannten Substituenten. Bevorzugte zykloaliphatische Kohlenwasserstoffreste E sind aliphatische

Kohlenwasserstoffreste mit 2 bis 24 und insbesondere mit 3 bis 20 C-Atomen. Sie können gegebenenfalls ein oder mehrere Heteroatome wie beispielsweise

Stickstoff, Sauerstoff oder Schwefel enthalten. Besonders bevorzugte zykloaliphatische Kohlenwasserstoffreste besitzen mindestens einen Ring mit vier, fünf, sechs, sieben, acht oder mehr Ringatomen. Die Carboxylgruppe ist dabei an einen der Ringe gebunden. Die Hydroxylgruppe kann dabei an einem primären, sekundären oder tertiären C-Atom des aliphatischen Kohlenwasserstoffrestes gebunden sein. Besonders bevorzugt sind Hydroxycarbonsäure/-ester, die eine Hydroxylgruppe an einem sekundären und speziell an einem tertiären C-Atom gebunden enthalten und solche Hydroxycarbonsäuren, bei denen sich die Hydroxylgruppe in a-, ß- oder γ-Position zur Carboxylgruppe befindet. Carboxyl- und Hydroxylgruppe können an gleiche oder verschiedene C-Atome von E gebunden sein. Das erfindungsgemäße Verfahren ist ebenso zur Veresterung von Polyhydroxycarbonsäuren mit beispielsweise zwei, drei, vier oder mehr Hydroxylgruppen geeignet, wobei die Hydroxycarbonsäuren jedoch nur eine Hydroxylgruppe pro C-Atom des

aliphatischen Kohlenwasserstoffrestes E tragen dürfen. Besonders bevorzugt sind dabei Hydroxycarbonsäuren, die einen aliphatischen Kohlenwasserstoffrest R 3 mit 1 bis 30 C-Atomen und insbesondere mit 2 bis 24 C-Atomen wie beispielsweise mit 3 bis 20 C-Atomen tragen. Geeignete aliphatische Hydroxycarbonsäuren sind beispielsweise

Hydroxyessigsäure, 2-Hydroxypropionsäure, 3-Hydroxypropionsäure

2-Hydroxybuttersäure, 3-Hydroxybuttersäure, 4-Hydroxybuttersäure,

2-Hydroxy-2-methylpropionsäure, 4-Hydroxypentansäure, 5-Hydroxypentansäure, 2,2-Dimethyl-3-hydroxypropionsäure, 5-Hydroxyhexansäure,

2-Hydroxyoctansäure, 2-Hydroxytetradecansäure, 15-Hydroxypentadecansäure, 16-Hydroxyhexadecansäure, 12-Hydroxystearinsäure sowie

α-Hydroxyphenylessigsäure, 4-Hydroxymandelsäure,

2-Hydroxy-2-phenylpropionsäure und 3-Hydroxy-3-phenylpropionsäure. Auch Polyhydroxycarbonsäuren wie beispielsweise Gluconsäure und

Polyhydroxypolycarbonsäuren wie beispielsweise Weinsäure und Gluconsäure lassen sich mittels des erfindungsgemäßen Verfahrens mit den Hydroxylgruppen tragenden Polymeren A) verestern. Erfindungsgemäß besonders bevorzugte Hydroxycarbonsäuren sind Hydroxyessigsäure, 2-Hydroxypropionsäure,

2-Hydroxybuttersäure und 3-Hydroxybuttersäure.

In einerweiteren bevorzugten Ausführungsform werden die Polymere A) mit aromatischen Hydroxycarbonsäuren B1), das heißt mit Carbonsäuren, die mindestens eine Hydroxylgruppe an einem aromatischen Kohlenwasserstoffrest E tragen, umgesetzt. Unter aromatischen Carbonsäuren werden Verbindungen verstanden, die mindestens eine an ein aromatisches System (Arylrest) gebundene Carboxylgruppe tragen. Unter aromatischen Systemen werden zyklische, durchkonjugierte Systeme mit (4p + 2) π-Elektronen verstanden, worin p eine natürliche ganze Zahl und vorzugsweise 1 , 2, 3, 4 oder 5 ist. Das aromatische System kann mono- oder polyzyklisch wie beispielsweise di- oder trizyklisch sein. Das aromatische System wird bevorzugt aus Kohlenstoffatomen gebildet. In einer weiteren bevorzugten Ausführungsform enthält es neben

Kohlenstoffatomen ein oder mehrere Heteroatome wie beispielsweise Stickstoff, Sauerstoff und/oder Schwefel. Beispiele für solche aromatischen Systeme sind Benzol, Naphthalin, Phenanthren, Furan und Pyridin. Das aromatische System kann neben der Carboxylgruppe und der Hydroxylgruppe ein oder mehrere wie beispielsweise eins, zwei, drei oder mehr gleiche oder verschiedene weitere Substituenten tragen. Geeignete weitere Substituenten sind beispielsweise Alkyl-, Alkenyl- und halogenierte Alkylreste, Hydroxy-, Hydroxyalkyl-, Alkoxy-, Halogen-, Cyano-, Nitril-, Nitro- und/oder Sulfonsäuregruppen. Diese können an beliebiger Position des aromatischen Systems gebunden sein. Der Arylrest trägt jedoch höchstens so viele Substituenten, wie er Valenzen hat.

Bevorzugte Beispiele für aromatische Carbonsäuren B1) sind

Alkylarylhydroxycarbonsäuren. Dabei handelt es sich um aromatische

Carbonsäuren, bei denen der die Carboxylgruppe tragende Arylrest zusätzlich mindestens einen Alkyl- oder Alkylenrest trägt. Besonders bevorzugt sind

Alkylbenzoesäuren, die mindestens einen Alkylrest mit 1 bis 20 C-Atomen und insbesondere 1 bis 12 C-Atomen wie beispielsweise 1 bis 4 C-Atomen tragen. Weitere bevorzugte Beispiele sind aromatische Carbonsäuren, deren Arylrest eine oder mehrere wie beispielsweise zwei oder drei Hydroxylgruppen und/oder Hydroxyalkylgruppen trägt. Bei der Veresterung mit Hydroxylgruppen tragenden Polymeren A) kann es dabei zur Bildung von Polykondensaten und insbesondere von an das Polymer A) gebundenen Polykondensaten der

Polyhydroxycarbonsäuren kommen.

Geeignete aromatische Carbonsäuren sind beispielsweise die verschiedenen Isomere der Hydroxybenzoesäure, Hydroxymethylbenzoesäure,

Hydroxymethoxybenzoesäure, Hydroxydimethoxybenzoesäure,

Hydroxyisophthalsäure, Hydroxynaphthalincarbonsäure,

Hydoxypyridincarbonsäure und Hydroxymethylpyridincarbonsäure und

Hydroxychinolincarbonsäure.

In einer weiteren bevorzugten Ausführungsform tragen die Carbonsäuren B1 ) neben mindestens einer Hydroxylgruppe araliphatische Kohlenwasserstoffreste E. Derartige araliphatische Carbonsäuren tragen mindestens eine über einen

Alkylen- oder Alkenylenrest an ein aromatisches System gebundene

Carboxylgruppe. Der Alkylen- bzw. Alkenylenrest besitzt dabei bevorzugt 1 bis 10 C-Atome und insbesondere 2 bis 5 C-Atome. Er kann linear oder verzweigt sein, bevorzugt ist er linear. Bevorzugte Alkenylenreste besitzen eine oder mehrere wie beispielsweise eine, zwei oder drei Doppelbindungen. Unter aromatischem System werden die bereits oben definierten aromatischen Systeme verstanden, an den ein mindestens eine Carboxylgruppe tragende Alkylrest gebunden ist. Die aromatischen Systeme können ihrerseits wiederum

Substituenten wie beispielsweise Halogenatome, halogenierte Alkylreste,

Ci-C2o-Alkyl-, C2-C 2 o-Alkenyl-, CrC 5 -Alkoxy- wie beispielsweise Methoxy-, Hydroxyl-, Hydroxyalkyl-, Ester-, Amid-, Cyano-, Nitril-, und/oder Nitrogruppen tragen. Beispiele für bevorzugte araliphatische Carbonsäuren sind

3-(4-Hydroxyphenyl)propionsäure und 4-Hydroxyphenoxyessigsäure und deren Mischungen.

Auch Mischungen verschiedener Carbonsäuren sind für den Einsatz im

erfindungsgemäßen Verfahren geeignet. Auch Polycarbonsäuren können als Carbonsäure B1 ) eingesetzt werden. Dabei kommt es zumindest teilweise zu einer Veresterung der Polycarbonsäure mit Hydroxylgruppen verschiedener Polymerketten, was zu einer Erhöhung des Molekulargewichts führen kann. Bevorzugt werden Polycarbonsäuren in Mischung mit Monocarbonsäuren eingesetzt. Dabei liegt der Anteil der Polycarbonsäuren bevorzugt zwischen 0,1 und 70 mol-%, besonders bevorzugt zwischen 0,5 und 50 mol-% und insbesondere zwischen 1 und 20 mol-% wie beispielsweise zwischen 2 und 10 mol-% bezogen auf die Gesamtmenge der zur Veresterung eingesetzten Carbonsäuren. Bevorzugte Polycarbonsäuren haben zwei, drei, vier oder fünf Carboxylgruppen. Besonders bevorzugt sind Dicarbonsäuren. Geeignete Polycarbonsäuren sind aliphatische Polycarbonsäuren wie beispielsweise

Milchsäure, Apfelsäure und Weinsäure.

Bei den erfindungsgemäß geeigneten Carbonsäureestern B2) handelt es sich um Ester der oben aufgeführten Carbonsäuren B1 ) mit Alkoholen der allgemeinen Formel

R 5 -OH. R 5 ist bevorzugt ein Alkylrest mit 1 , 2 oder 3 C-Atomen. Besonders bevorzugte Alkohole sind Methanol und Ethanol. Bei Umsetzung der Hydroxylgruppen tragenden Polymere A) mit

Hydroxycarbonsäuren B1 ) und/oder Hydroxycarbonsäureestern B2) nach dem erfindungsgemäßen Verfahren kann es zur Bildung von Polykondensaten und insbesondere von an das Polymer A) gebundenen Polykondensaten der

Polyhydroxycarbonsäuren kommen. Bevorzugt liegt der Polykondensationsgrad k zwischen 1 und 1.000, besonders bevorzugt zwischen 2 und 500 wie

beispielsweise zwischen 5 und 100. Dementsprechend enthalten die

Strukturelemente (II) des Polymers A) in einer bevorzugten Ausführungsform auf das Rückgrat des Hydroxylgruppen tragenden Polymers aufgepfropfte

Polykondensate der Hydroxycarbonsäure B1) bzw. des

Hydroxycarbonsäureesters B2).

Hydroxylgruppen tragende Polymere A) und Hydroxycarbonsäuren B1) bzw. Hydroxycarbonsäureester B2) werden bevorzugt im Verhältnis 100 : 1 bis 100 : 1 , besonders bevorzugt im Verhältnis 10 : 1 bis 1 : 10 und speziell im Verhältnis 5 : 1 bis 1 : 5 eingesetzt, jeweils bezogen auf die Molequivalente an Hydroxylgruppen tragenden Strukturen der Formel (I) und die Carboxylgruppen der Formeln (III) und/oder (IV). Durch das Verhältnis von Hydroxycarbonsäuren B1 ) bzw.

Hydroxycarbonsäureestern B2) zu Hydroxylgruppen des Polymers können einerseits der Modifizierungsgrad und andererseits der Polykondensationsgrad von Hydroxycarbonsäure B1 ) bzw. Hydroxycarbonsäureester B2) und somit die Eigenschaften des Produkts eingestellt werden. Sofern Hydroxycarbonsäure B1) bzw. Hydroxycarbonsäureester B2) im Überschuss eingesetzt bzw. nicht vollständig zur Reaktion gebracht werden, bleiben Anteile davon unumgesetzt im Polymer, die je nach Verwendungszweck im Produkt verbleiben oder abgetrennt werden können. Die Veresterung der freien Hydroxylgruppen des Polymers A) kann demzufolge vollständig oder auch nur teilweise erfolgen. Bei partieller Veresterung werden bevorzugt 1 bis 99 %, besonders bevorzugt 2 bis 90, insbesondere 5 bis 70 % und speziell 10 bis 50 % wie beispielsweise 20 bis 40 % der Hydroxylgruppen verestert.

Besonders bevorzugt ist das erfindungsgemäße Verfahren für die partielle

Veresterung von Hydroxylgruppen tragenden Polymeren A) geeignet. Dabei werden Hydroxycarbonsäure B1) bzw. Hydroxycarbonsäureester B2) bezogen auf die Gesamtzahl der Hydroxylgruppen bevorzugt unterstöchiometrisch eingesetzt, insbesondere im Verhältnis 1 :100 bis 1 :2 und speziell im Verhältnis 1 :50 bis 1 :5 wie beispielsweise im Verhältnis 1 :20 bis 1 :8. Bevorzugt werden die

Reaktionsbedingungen dabei so eingestellt, dass mindestens 10 mol-%, insbesondere 20 bis 100 mol-% und speziell 25 bis 80 mol-% wie beispielsweise 30 bis 70 mo-% der eingesetzten Carbonsäure bzw. des eingesetzten

Fettsäureesters umgesetzt werden. Bei diesen partiellen Veresterungen werden sehr homogene Produkte gebildet, was sich in einer guten Löslichkeit und einem scharfen Trübungspunkt wässriger Lösungen zeigt.

Bevorzugt enthält das Reaktionsgemisch 5 bis 98 Gew.-%, besonders bevorzugt 10 bis 95 Gew.-%, insbesondere 20 bis 90 Gew.-% wie beispielsweise 50 bis 80 Gew.-% Wasser, oder 5 bis 98 Gew.-%, besonders bevorzugt 10 bis 95 Gew.-%, insbesondere 20 bis 90 Gew.-% wie beispielsweise 50 bis 80 Gew.-% eines Gemischs aus Wasser und einem oder mehreren mit Wasser mischbaren, organischen Lösemittel. In jedem Fall wird den Reaktanden A) und/oder B) vor der Bestrahlung mit Mikrowellen Wasser zugesetzt, so dass das Reaktionsprodukt eine über die Menge des bei der Veresterung freiwerdenden Reaktionswassers hinausgehende Menge Wasser enthält.

Eine Vielzahl an Hydroxycarbonsäuren B1 ) und Hydroxycarbonsäureestern B1) ist gut wasserlöslich, so dass deren Umsetzung mit Hydroxylgruppen tragenden Polymeren A) in wässriger Lösung durchgeführt werden kann. Die begrenzte Löslichkeit verschiedener Hydroxycarbonsäuren B1) und

Hydroxycarbonsäureester B2) in Wasser erfordert oftmals die Zugabe eines oder mehrerer mit Wasser mischbarer, organischer Lösemittel zum Reaktionsgemisch. Bevorzugte mit Wasser mischbare, organische Lösemittel sind polare protische wie auch polare aprotische Flüssigkeiten. Bevorzugt haben diese eine bei 25 °C gemessene Dielektrizitätskonstante von mindestens 10 und insbesondere mindestens 12 wie beispielsweise mindestens 15. Bevorzugte organische

Lösemittel sind in Wasser zu mindestens 100 g/l, besonders bevorzugt zu mindestens 200 g/l, insbesondere zu mindestens 500 g/l löslich und speziell sind sie mit Wasser vollständig mischbar. Besonders bevorzugt als Lösemittel sind heteroaliphatische Verbindungen und insbesondere Alkohole, Ketone,

endverschlossene Polyether, Carbonsäureamide wie beispielsweise tertiäre Carbonsäureamide, Nitrile, Sulfoxide sowie Sulfone. Bevorzugte aprotische Lösemittel sind beispielsweise Formamid, Ν,Ν-Dimethylformamid (DMF),

Ν,Ν-Dimethylacetamid, Aceton, γ-Butyrolacton, Acetonitril, Sulfolan und

Dimethylsulfoxid (DMSO). Bevorzugte protische organische Lösemittel sind niedere Alkohole mit 1 bis 10 C-Atomen und insbesondere mit 2 bis 5 C-Atomen. Beispiele für geeignete Alkohole sind Methanol, Ethanol, n-Propanol,

iso-Propanol, n-Butanol, iso-Butanol, tert.-Butanol, n-Pentanol, 2-Pentanol, 3-Pentanol, 2-Methyl-1-butanol, Isoamylalkohol, 2-Methyl-2-butanol, Ethylenglykol und Glycerin. Besonders bevorzugt werden sekundäre und tertiäre Alkohole eingesetzt, die unter den gewählten Reaktionsbedingungen inert sind und weder zu konkurrierender Veresterung noch zu Nebenreaktionen wie Wasserabspaltung neigen. Besonders bevorzugt sind sekundäre und tertiäre Alkohole mit 3 bis 5 C-Atomen wie beispielsweise Isopropanol, sec-Butanol, 2-Pentanol und

2-Methyl-2-butanol sowie Neopentylalkohol. Auch Mischungen der genannten Lösemittel sind erfindungsgemäß geeignet.

Im Allgemeinen werden als mit Wasser mischbare, organische Lösemittel niedrig siedende Flüssigkeiten bevorzugt und insbesondere solche, die einen Siedepunkt bei Normaldruck von unter 150 °C und speziell unter 120 °C wie beispielsweise unter 100 °C besitzen und somit mit geringem Aufwand wieder aus den

Reaktionsprodukten entfernt werden können. Hochsiedende Lösemittel haben sich insbesondere dann bewährt, wenn sie für die weitere Verwendung der

modifizierten Polymere im Produkt verbleiben können. Sofern mit Wasser mischbare organische Lösemittel eingesetzt werden, liegt ihr Anteil am

Lösemittelgemisch bevorzugt zwischen 1 und 75 Gew.-%, besonders bevorzugt zwischen 2 und 60 Gew.-%, insbesondere zwischen 5 und 50 Gew.-% wie beispielsweise zwischen 10 und 30 Gew.-%. Wasser ist im Lösemittelgemisch ad 100 Gew.-% enthalten.

Bei Einsatz von Hydroxycarbonsäuren B1 ) bzw. Hydroxycarbonsäureestem B2) mit begrenzter Wasserlöslichkeit können dem Reaktionsgemisch in einer bevorzugten Ausführungsform ein oder mehrere Emulgatoren zugesetzt werden. Bevorzugt werden dabei Emulgatoren eingesetzt, die gegenüber den Edukten sowie dem Produkt chemisch inert sind. In einer besonders bevorzugten

Ausführungsform handelt es sich bei dem Emulgator um Reaktionsprodukt aus separater Herstellung.

Die Herstellung des für das erfindungsgemäße Verfahren eingesetzten

Reaktionsgemischs, das ein Hydroxylgruppen tragendes Polymer A), eine

Hydroxycarbonsäure B1 ) oder einen Hydroxycarbonsäureester B2), Wasser sowie gegebenenfalls ein mit Wasser mischbares Lösemittel und/oder weitere Hilfsstoffe wie beispielsweise Emulgator und/oder Katalysator enthält, kann auf verschiedene Weise erfolgen. Das Mischen von Polymer A) und Hydroxycarbonsäure B1) bzw. Hydroxycarbonsäureester B2) und gegebenenfalls den weiteren Hilfsstoffen kann kontinuierlich, diskontinuierlich oder auch in semi-Batch-Prozessen durchgeführt werden. Insbesondere für Prozesse im industriellen Maßstab hat es sich bewährt, die Edukte dem erfindungsgemäßen Verfahren in flüssiger Form zuzuführen. Bevorzugt wird dazu das Hydroxylgruppen tragende Polymer A) als Lösung in Wasser oder als Lösung in Wasser und einem mit Wasser mischbaren Lösemittel dem erfindungsgemäßen Verfahren zugeführt. Es kann aber auch in gequollener Form eingesetzt werden, sofern diese pumpbar ist.

Die Hydroxycarbonsäure B1 ) oder der Hydroxycarbonsäureester B2) können, sofern sie flüssig oder bei niedrigen Temperaturen von bevorzugt unter 150 °C und insbesondere unterhalb 100 °C schmelzbar sind, als solche eingesetzt werden. In vielen Fällen hat es sich bewährt, B1 ) bzw. B2), gegebenenfalls in geschmolzenem Zustand, mit Wasser und/oder einem mit Wasser mischbaren Lösemittel versetzt beispielsweise als Lösung, Dispersion oder Emulsion einzusetzen.

Das Mischen von Hydroxylgruppen tragendem Polymer A) mit

Hydroxycarbonsäure B1 ) oder Hydroxycarbonsäureester B2) und gegebenenfalls den weiteren Hilfsstoffen kann in einem (semi)-Batch Prozess durch sequentielles Chargieren der Bestandteile durchgeführt werden, beispielsweise in einem separaten Rührbehälter. In einer bevorzugten Ausführungsform wird die

Hydroxycarbonsäure bzw. der Hydroxycarbonsäureester in einem mit Wasser mischbaren organischen Lösemittel gelöst und dann dem bereits gelösten oder gequollenen Polymer zugesetzt. Bevorzugt erfolgt die Zugabe in kleinen Portionen über längere Zeit und unter Rühren, um einerseits eine homogene Verteilung der Hydroxycarbonsäure bzw. des Hydroxycarbonsäureesters sicherzustellen und andererseits eine lokale Ausfällung des Polymers an der Dosierstelle zu vermeiden. Insbesondere für kontinuierlich durchgeführte Reaktionen werden die Edukte in einer bevorzugten Ausführungsform im gewünschten Mengenverhältnis aus separaten Vorlagen dem Gefäß, in dem die Bestrahlung mit Mikrowellen erfolgt (im Folgenden auch als Reaktionsgefäß bezeichnet), zugeführt. In einer weiteren bevorzugten Ausführungsform werden sie vor dem Eintritt in das Reaktionsgefäß und/oder im Reaktionsgefäß selbst mittels geeigneter Mischelemente wie beispielsweise statischem Mischer und/oder archimedischer Schraube und/oder durch Durchströmen eines porösen Schaums weiter homogenisiert.

Ein Katalysator sowie weitere Hilfsstoffe können, sofern eingesetzt, einem der Edukte oder auch der Eduktmischung vor dem Eintritt in das Reaktionsgefäß zugesetzt werden. Auch feste, pulverförmige und heterogene Systeme können nach dem erfindungsgemäßen Verfahren umgesetzt werden, wobei lediglich entsprechende technische Vorrichtungen zum Fördern des Reaktionsgutes erforderlich sind.

Die Umsetzung erfolgt erfindungsgemäß unter dem Einfluss von

Mikrowellenstrahlung, wobei das Reaktionsgemisch durch die

Mikrowellenstrahlung bevorzugt auf Temperaturen oberhalb 110 °C, besonders bevorzugt auf Temperaturen zwischen 120 und 230 °C, insbesondere zwischen 130 und 210 °C und insbesondere zwischen 140 und 200 °C wie beispielsweise zwischen 150 und 195 °C geheizt wird. Diese Temperaturen beziehen sich auf die während der Mikrowellenbestrahlung maximal erreichten Temperaturen. Die Temperatur kann beispielsweise an der Oberfläche des Bestrahlungsgefäßes gemessen werden. Bei kontinuierlich durchgeführten Reaktionen wird sie bevorzugt am Reaktionsgut direkt nach dem Verlassen der Bestrahlungszone bestimmt. Der Druck wird im Reaktionsgefäß bevorzugt so hoch eingestellt, dass das Reaktionsgemisch im flüssigen Zustand verbleibt und nicht siedet. Bevorzugt wird bei Drücken oberhalb 1 bar, bevorzugt bei Drücken zwischen 3 und 300 bar, besonderes bevorzugt zwischen 5 und 200 und insbesondere zwischen 10 und 100 bar wie beispielsweise zwischen 15 und 50 bar gearbeitet.

Zur Beschleunigung bzw. zur Vervollständigung der Reaktion zwischen Polymer A) und Hydroxycarbonsäure B1) bzw. Hydroxycarbonsäureester B2) hat es sich in vielen Fällen bewährt, in Gegenwart von sauren Katalysatoren zu arbeiten.

Erfindungsgemäß bevorzugte Katalysatoren sind saure anorganische,

metallorganische oder organische Katalysatoren und Gemische aus mehreren dieser Katalysatoren. Bevorzugte Katalysatoren sind flüssig und/oder im

Reaktionsmedium löslich.

Als saure anorganische Katalysatoren im Sinne der vorliegenden Erfindung sind beispielsweise Schwefelsäure, Phosphorsäure, Phosphonsäure, hypophosphorige Säure, Aluminiumsulfathydrat, Alaun, saures Kieselgel und saures

Aluminiumhydroxid zu nennen. Weiterhin sind beispielsweise

Aluminiumverbindungen der allgemeinen Formel AI(OR 5 )3 und Titanate der allgemeinen Formel Ti(OR 15 ) 4 als saure anorganische Katalysatoren einsetzbar, wobei die Reste R 15 jeweils gleich oder verschieden sein können und unabhängig voneinander gewählt sind aus Ci-C-io-Alkylresten, beispielsweise Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec.-Pentyl, neo-Pentyl, 1 ,2-Dimethylpropyl, iso-Amyl, n-Hexyl, sec.-Hexyl, n-Heptyl, n-Octyl, 2-Ethylhexy, n-Nonyl oder n-Decyl, C 3 -Ci2-Cycloalkylresten, beispielsweise Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl, Cyclononyl, Cyclodecyl, Cycloundecyl und Cyclododecyl; bevorzugt sind Cyclopentyl, Cyclohexyl und Cycloheptyl. Bevorzugt sind die Reste R 15 in AI(OR 15 )3 bzw. Ti(OR 15 ) 4 jeweils gleich und gewählt aus Isopropyl, Butyl und 2-Ethylhexyl.

Bevorzugte saure metallorganische Katalysatoren sind beispielsweise gewählt aus Dialkylzinnoxiden (R 15 ) 2 SnO, wobei R 5 wie oben stehend definiert ist. Ein besonders bevorzugter Vertreter für saure metallorganische Katalysatoren ist Di-n-butylzinnoxid, das als sogenanntes Oxo-Zinn oder als Fascat®-Marken kommerziell erhältlich ist.

Bevorzugte saure organische Katalysatoren sind saure organische Verbindungen mit beispielsweise Sulfonsäure- oder Phosphonsäuregruppen. Besonders bevorzugte Sulfonsäuren enthalten mindestens eine Sulfonsäuregruppe und mindestens einen gesättigten oder ungesättigten, linearen, verzweigten und/oder zyklischen Kohlenwasserstoffrest mit 1 bis 40 C-Atomen und bevorzugt mit 3 bis 24 C-Atomen. Insbesondere bevorzugt sind aromatische Sulfonsäuren und speziell alkylaromatische Mono-Sulfonsäuren mit einem oder mehreren Ci-C28-Alkylresten und insbesondere solche mit C3-C22-Alkylresten. Geeignete Beispiele sind Methansulfonsäure, Butansulfonsäure, Benzolsulfonsäure, p-Toluolsulfonsäure, Xylolsulfonsäure, 2-Mesitylensulfonsäure,

4-Ethylbenzolsulfonsäure, Isopropylbenzolsulfonsäure, 4-Butylbenzolsulfonsäure, 4-Octylbenzolsulfonsäure; Dodecylbenzolsulfonsäure,

Didodecylbenzolsulfonsäure, Naphthalinsulfonsäure. Auch saure

Ionenaustauscher können als saure organische Katalysatoren eingesetzt werden, beispielsweise Sulfonsäuregruppen tragende vernetzte Poly(styrol)-Harze. Besonders bevorzugt für die Durchführung des erfindungsgemäßen Verfahrens sind Schwefelsäure, Methansulfonsäure, p-Toluolsulfonsäure,

Dodecylbenzolsulfonsäure, Phosphorsäure, Polyphosphorsäure und

Polystyrolsulfonsäuren. Insbesondere bevorzugt sind Titanate der allgemeinen Formel Ti(OR 15 ) und speziell Titantetrabutylat und Titantetraisopropylat.

Wünscht man saure anorganische, metallorganische oder organische

Katalysatoren einzusetzen, so setzt man erfindungsgemäß 0,01 bis 10 Gew.-%, bevorzugt 0,02 bis 2 Gew.-% Katalysator ein. In einer weiteren bevorzugten Ausführungsform wird die Mikrowellenbestrahlung in Gegenwart von sauren, festen und im Reaktionsmedium nicht oder nicht vollständig löslichen Katalysatoren durchgeführt. Derartige heterogene

Katalysatoren können im Reaktionsgemisch suspendiert und gemeinsam mit dem Reaktionsgemisch der Mikrowellenbestrahlung ausgesetzt werden. In einer besonders bevorzugten kontinuierlichen Ausführungsform wird das

gegebenenfalls mit Lösemittel versetzte Reaktionsgemisch über einen im

Reaktionsgefäß und insbesondere in der Bestrahlungszone fixierten

Festbettkatalysator geleitet und dabei Mikrowellenstrahlung ausgesetzt. Geeignete feste Katalysatoren sind beispielsweise Zeolithe, Kieselgel, Montmorillonit und (teil)vernetzte Polystyrolsulfonsäure, die gegebenenfalls mit katalytisch aktiven Metallsalzen imprägniert sein können. Geeignete saure lonentauscher auf Basis von Polystyrolsulfonsäuren, die als Festphasenkatalysatoren eingesetzt werden können, sind beispielsweise von der Firma Rohm & Haas unter der Markenbezeichnung Amberlyst ® erhältlich.

Zur Beschleunigung bzw. zur Vervollständigung der Reaktion zwischen Polymer A) und Hydroxycarbonsäureester B2) hat es sich in vielen Fällen bewährt, in Gegenwart von basischen Katalysatoren oder Gemischen aus mehreren dieser Katalysatoren zu arbeiten. Als basische Katalysatoren werden im Rahmen der vorliegenden Erfindung ganz allgemein solche basischen Verbindungen

eingesetzt, die geeignet sind, die Umesterung von Hydroxycarbonsäureestem mit Alkoholen zu beschleunigen. Beispiele geeigneter Katalysatoren sind

anorganische und organische Basen wie beispielsweise Metallhydroxide, -oxide, -carbonate oder -alkoxide. In einer bevorzugten Ausführungsform wird der basische Katalysator ausgewählt aus der Gruppe der Hydroxide, Oxide,

Carbonate oder Alkoxide von Alkali- oder Erdalkalimetallen. Dabei sind

Lithiumhydröxid, Natriumhydroxid, Kaliumhydroxid, Natriummethoxid,

Kaliummethoxid, Natriumcarbonat und Kaliumcarbonat ganz besonders bevorzugt. Auch Cyanidionen sind als Katalysator geeignet. Diese Substanzen können in fester Form oder als Lösung wie beispielsweise als wässrige oder alkoholische Lösung eingesetzt werden. Die Menge der eingesetzten Katalysatoren hängt dabei von der Aktivität und Stabilität des Katalysators bei den gewählten

Reaktionsbedingungen ab und ist der jeweiligen Reaktion anzupassen. Die Menge des einzusetzenden Katalysators kann dabei in weiten Grenzen variieren.

Besonders bevorzugt werden katalytische Mengen der oben genannten, reaktionsbeschleunigend wirkenden Verbindungen eingesetzt, bevorzugt im Bereich zwischen 0,001 und 10 Gew.-%, besonders bevorzugt im Bereich von 0,01 bis 5 Gew.-% wie beispielsweise zwischen 0,02 und 2 Gew.-%, bezogen auf die eingesetzte Menge an Hydroxycarbonsäureester B2).

Nach der Mikrowellenbestrahlung kann das Reaktionsgemisch in vielen Fällen direkt einer weiteren Verwendung zugeführt werden. Um lösemittelfreie Produkte zu erhalten, können Wasser gegebenenfalls anwesendes organisches Lösemittel durch übliche Trennverfahren wie beispielsweise Phasentrennung, Destillation, Gefriertrocknung oder Absorption vom Rohprodukt abgetrennt werden. Dabei 2b können auch im Überschuss eingesetzte Edukte sowie gegebenenfalls nicht umgesetzte Restmengen der Edukte mit abgetrennt werden. Für spezielle

Anforderungen können die Rohprodukte nach üblichen Reinigungsverfahren wie beispielsweise Waschen, Umfällung, Filtration bzw. chromatographische

Verfahren weiter aufgereinigt werden. Oftmals hat es sich hierbei auch als erfolgreich erwiesen, überschüssige bzw. nicht umgesetzte Hydroxycarbonsäure zu neutralisieren und durch Waschen zu entfernen.

Die Mikrowellenbestrahlung wird üblicherweise in Geräten durchgeführt, die ein Reaktionsgefäß (im Folgenden auch als Bestrahlungsgefäß bezeichnet) aus einem für Mikrowellen weitestgehend transparenten Material besitzen, in das in einem Mikrowellengenerator erzeugte Mikrowellenstrahlung eingekoppelt wird. Mikrowellengeneratoren, wie beispielsweise das Magnetron, das Klystron und das Gyrotron sind dem Fachmann bekannt.

Die zur Durchführung des erfindungsgemäßen Verfahrens eingesetzten

Reaktionsgefäße sind bevorzugt aus weitgehend mikrowellentransparentem, hoch schmelzendem Material gefertigt oder enthalten zumindest Teile wie

beispielsweise Fenster aus diesen Materialien. Besonders bevorzugt werden nichtmetallische Reaktionsgefäße eingesetzt. Unter weitgehend

mikrowellentransparent werden hier Werkstoffe verstanden, die möglichst wenig Mikrowellenenergie absorbieren und in Wärme umwandeln. Als Maß für die Fähigkeit eines Stoffes, Mikrowellenenergie zu absorbieren und in Wärme zu überführen wird oftmals der dielektrische Verlustfaktor tan δ = ε ' Ίε '

herangezogen. Der dielektrische Verlustfaktor tan δ ist definiert als das Verhältnis aus dielektrischem Verlust ε " und Dielektrizitätskonstante ε'. Beispiele für tan δ-Werte verschiedener Materialien sind beispielsweise in D. Bogdal,

Microwave-assisted Organic Synthesis, Elsevier 2005 wiedergegeben. Für erfindungsgemäß geeignete Reaktionsgefäße werden Materialen mit bei 2,45 GHz und 25 °C gemessenen tan δ-Werten von unter 0,01 , insbesondere unter 0,005 und speziell unter 0,001 bevorzugt. Als bevorzugte mikrowellentransparente und temperaturstabile Materialien kommen in erster Linie Werkstoffe auf mineralischer Basis wie beispielsweise Quarz, Aluminiumoxid, Zirkonoxid, Siliziumnitrid und ähnliches in Betracht. Auch temperaturstabile Kunststoffe wie insbesondere Fluorpolymere wie beispielsweise Teflon, und technische Kunststoffe wie

Polypropylen, oder Polyaryletherketone wie beispielsweise glasfaserverstärktes Polyetheretherketon (PEEK) sind als Gefäßmaterialien geeignet. Um den

Temperaturbedingungen während der Reaktion zu widerstehen haben sich insbesondere mit diesen Kunststoffen beschichtete Mineralien wie Quarz oder Aluminiumoxid als Gefäßmaterialien bewährt.

Als Mikrowellen werden elektromagnetische Strahlen mit einer Wellenlänge zwischen etwa 1 cm und 1 m und Frequenzen zwischen etwa 300 MHz und 30 GHz bezeichnet. Dieser Frequenzbereich ist prinzipiell für das

erfindungsgemäße Verfahren geeignet. Bevorzugt wird für das erfindungsgemäße Verfahren Mikrowellenstrahlung mit für industrielle, wissenschaftliche und medizinische Anwendungen freigegebenen Frequenzen verwendet wie

beispielsweise mit Frequenzen von 915 MHz, 2,45 GHz, 5,8 GHz oder 24,12 GHz. Die Mikrowellenbestrahlung des Reaktionsgemischs kann sowohl in

Mikrowellenapplikatoren, die im Mono- bzw. Quasi-Monomode arbeiten wie auch in solchen, die im Multimode arbeiten, erfolgen. Entsprechende Geräte sind dem Fachmann bekannt.

Die für die Durchführung des erfindungsgemäßen Verfahrens in das

Reaktionsgefäß einzustrahlende Mikrowellenleistung ist insbesondere abhängig von der angestrebten Reaktionstemperatur, der Geometrie des Reaktionsgefäßes und des damit verbundenen Reaktionsvolumens sowie bei kontinuierlich durchgeführten Reaktionen von der Durchflussgeschwindigkeit des

Reaktionsgutes durch das Reaktionsgefäß. Sie liegt üblicherweise zwischen 100 W und mehreren 100 kW und insbesondere zwischen 200 W und 100 kW wie beispielsweise zwischen 500 W und 70 kW. Sie kann an einer oder mehreren Stellen des Reaktionsgefäßes appliziert werden. Sie kann über einen oder mehrere Mikrowellengeneratoren erzeugt werden.

Die Dauer der Mikrowellenbestrahlung hängt von verschiedenen Faktoren wie dem Reaktionsvolumen, der Geometrie des Reaktionsgefäßes, der gewünschten Verweilzeit des Reaktionsgemisches bei Reaktionstemperatur sowie dem gewünschten Umsetzungsgrad ab. Üblicherweise wird die Mikrowellenbestrahlung über einen Zeitraum von weniger als 30 Minuten, bevorzugt zwischen

0,01 Sekunde und 15 Minuten, besonders bevorzugt zwischen 0,1 Sekunde und 10 Minuten und insbesondere zwischen einer Sekunde und 5 Minuten wie beispielsweise zwischen 5 Sekunden und 2 Minuten vorgenommen. Die Intensität (Leistung) der Mikrowellenstrahlung wird dabei so eingestellt, dass das

Reaktionsgut in möglichst kurzer Zeit die angestrebte Reaktionstemperatur erreicht. In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens hat es sich bewährt, das Reaktionsgemisch dem Reaktionsgefäß in erwärmter Form zu zuführen. Dadurch wird die Viskosität des Reaktionsgemischs abgesenkt und seine Homogenität verbessert. Zum Aufrechterhalten der

Reaktionstemperatur kann das Reaktionsgut mit reduzierter und/oder gepulster Leistung weiter bestrahlt oder anderweitig auf Temperatur gehalten werden. In einer bevorzugten Ausführungsform wird das Umsetzungsprodukt direkt nach Beendigung der Mikrowellenbestrahlung möglichst schnell auf Temperaturen unterhalb 100 °C, bevorzugt unterhalb 80 °C und speziell unterhalb 50 °C abgekühlt. Die Mikrowellenbestrahlung kann diskontinuierlich im Batch-Verfahren oder, bevorzugt, kontinuierlich zum Beispiel in einem als Reaktionsgefäß dienenden Strömungsrohr, das im Folgenden auch als Reaktionsrohr bezeichnet wird, durchgeführt werden. Sie kann weiterhin in semi-Batch Prozessen wie

beispielsweise kontinuierlich betriebenen Rührreaktoren oder Kaskadenreaktoren durchgeführt werden. In einer bevorzugten Ausführungsform wird die Reaktion in einem geschlossenen, druckfesten und chemisch inerten Gefäß durchgeführt, wobei das Wasser sowie gegebenenfalls die Edukte zu einem Druckaufbau führen. Nach Beendigung der Reaktion kann der Überdruck durch Entspannen zur Verflüchtigung und Abtrennung von Wasser sowie gegebenenfalls überschüssiger Säure und/oder Abkühlung des Reaktionsprodukts verwendet werden. In einer besonders bevorzugten Ausführungsform wird das Reaktionsgemisch nach Beenden der Mikrowellenbestrahlung bzw. nach Verlassen des Reaktionsgefäßes möglichst schnell von Wasser und gegebenenfalls anwesenden kataiytisch aktiven Spezies befreit, um eine Hydrolyse des gebildeten Esters zu vermeiden.

In einer bevorzugten Ausführungsform wird das erfindungsgemäße Verfahren in einem diskontinuierlichen Mikrowellenreaktor durchgeführt, in dem eine bestimmte Menge des Reaktionsgemischs in ein Bestrahlungsgefäß gefüllt, mit Mikrowellen bestrahlt und anschließend aufgearbeitet wird. Dabei wird die

Mikrowellenbestrahlung bevorzugt in einem druckfesten, gerührten Gefäß vorgenommen. Die Einkopplung der Mikrowellen in das Reaktionsgefäß kann, sofern das Reaktionsgefäß aus einem für Mikrowellen transparenten Material gefertigt ist oder für Mikrowellen transparente Fenster besitzt, über die

Gefäßwandung erfolgen. Die Mikrowellen können aber auch über Antennen, Sonden bzw. Hohlleitersysteme in das Reaktionsgefäß eingekoppelt werden. Für die Bestrahlung größerer Reaktionsvolumina wird hier bevorzugt ein im Multimode betriebener Mikrowellenapplikator eingesetzt. Die diskontinuierliche

Ausführungsform des erfindungsgemäßen Verfahrens erlaubt durch Variation der Mikrowellenleistung schnelle wie auch langsame Heizraten und insbesondere das Halten der Temperatur über längere Zeiträume wie beispielsweise mehrere Stunden. In einer bevorzugten Ausführungsform wird das wässrige

Reaktionsgemisch vor Beginn der Mikrowellenbestrahlung im Bestrahlungsgefäß vorgelegt. Bevorzugt hat es dabei Temperaturen unterhalb 100 °C wie

beispielsweise zwischen 10 und 50 °C. In einer weiteren bevorzugten

Ausführungsform werden die Reaktanden und Wasser oder Teile davon dem Bestrahlungsgefäß erst während der Bestrahlung mit Mikrowellen zugeführt. In einer weiteren bevorzugten Ausführungsform wird der diskontinuierliche

Mikrowellenreaktor unter kontinuierlichem Zuführen von Edukten und

gleichzeitigem Ausschleusen von Reaktionsgut in Form eines Semi-Batch- bzw. Kaskadenreaktors betrieben.

In einer besonders bevorzugten Ausführungsform wird das erfindungsgemäße Verfahren in einem kontinuierlichen Mikrowellenreaktor durchgeführt. Die

Reaktionsmischung wird dazu kontinuierlich durch ein druckfestes, gegenüber den Reaktanden inertes, für Mikrowellen weitestgehend transparentes und in einen Mikrowellenapplikator eingebautes, als Bestrahlungsgefäß dienendes Reaktionsrohr geführt. Dieses Reaktionsrohr hat bevorzugt einen Durchmesser von einem Millimeter bis ca. 50 cm, speziell zwischen 2 mm und 35 cm wie beispielsweise zwischen 5 mm und 15 cm. Besonders bevorzugt ist der

Durchmesser des Reaktionsrohres kleiner als die Eindringtiefe der Mikrowellen in das zu bestrahlende Reaktionsgut. Insbesondere beträgt er 1 bis 70 % und speziell 5 bis 60 % wie beispielsweise 10 bis 50 % der Eindringtiefe. Unter Eindringtiefe wird dabei die Strecke verstanden, auf der die eingestrahlte

Mikrowellenenergie auf 1/e abgeschwächt wird. Unter Reaktions bzw. - Strömungsrohren werden hier Bestrahlungsgefäße verstanden, bei denen das Verhältnis von Länge zu Durchmesser der

Bestrahlungszone (hierunter wird der Anteil des Strömungsrohres verstanden, in dem das Reaktionsgut Mikrowellenstrahlung ausgesetzt ist) größer als 5, bevorzugt zwischen 10 und 100.000, besonders bevorzugt zwischen 20 und 10.000 wie beispielsweise zwischen 30 und 1.000 ist. Sie können beispielsweise gerade oder gebogen oder auch als Rohrschlange ausgeformt sein. In einer speziellen Ausführungsform ist das Reaktionsrohr in Form eines

Doppelmantelrohres ausgestaltet, durch dessen Innen- und Außenraum die Reaktionsmischung nacheinander im Gegenstrom geführt werden kann, um beispielsweise die Temperaturführung und Energieeffizienz des Verfahrens zu erhöhen. Als Länge des Reaktionsrohres ist dabei die vom Reaktionsgemisch im Mikrowellenfeld insgesamt durchströmte Strecke zu verstehen. Das Reaktionsrohr ist auf seiner Länge von mindestens einem, bevorzugt aber von mehreren wie beispielsweise zwei, drei, vier, fünf, sechs, sieben acht oder mehr

Mikrowellenstrahlern umgeben. Die Mikrowelleneinstrahlung erfolgt bevorzugt über den Rohrmantel. In einer weiteren bevorzugten Ausführungsform erfolgt die Mikrowelleneinstrahlung mittels mindestens einer Antenne über die Rohrenden.

Das Reaktionsrohr ist üblicherweise am Einlass mit einer Dosierpumpe sowie einem Manometer und am Auslass mit einem Druckhalteventil und einem

Wärmetauscher versehen. Bevorzugt wird das Reaktionsgemisch dem

Reaktionsrohr in flüssiger Form mit Temperaturen unterhalb 100 °C wie

beispielsweise zwischen 10 °C und 90 °C zugeführt. In einer weiteren bevorzugten Ausführungsform werden eine Lösung des Polymers und Carbonsäure bzw.

Carbonsäureester erst kurz vor dem Eintritt in das Reaktionsrohr, gegebenenfalls unter zu Hilfenahme geeigneter Mischelemente wie beispielsweise statischer Mischer und/oder archimedischer Schraube und/oder durch Durchströmen eines porösen Schaums, vermischt. In einer weiteren bevorzugten Ausführungsform werden sie in der Reaktionsrohr mittels geeigneter Mischelemente wie

beispielsweise statischem Mischer und/oder archimedischer Schraube und/oder durch Durchströmen eines porösen Schaums weiter homogenisiert. Durch Variation von Rohrquerschnitt, Länge der Bestrahlungszone,

Fließgeschwindigkeit, Geometrie der Mikrowellenstrahler, der eingestrahlten Mikrowellenleistung sowie der dabei erreichten Temperatur werden die

Reaktionsbedingungen so eingestellt, dass die maximale Reaktionstemperatur schnellstmöglich erreicht wird. In einer bevorzugten Ausführungsform wird die Verweilzeit bei Maximaltemperatur so kurz gewählt, dass so wenig Neben- oder Folgereaktionen wie möglich auftreten.

Bevorzugt wird der kontinuierliche Mikrowellenreaktor im Monomode oder Quasi- Monomode betrieben. Die Verweilzeit des Reaktionsguts in der Bestrahlungszone liegt dabei im Allgemeinen unter 20 Minuten, bevorzugt zwischen 0,01 Sekunden und 10 Minuten, bevorzugt zwischen 0,1 Sekunden und 5 Minuten wie

beispielsweise zwischen einer Sekunde und 3 Minuten. Das Reaktionsgut kann zur Vervollständigung der Reaktion, gegebenenfalls nach Zwischenkühlung, mehrfach die Bestrahlungszone durchströmen.

In einer besonders bevorzugten Ausführungsform erfolgt die Bestrahlung des Reaktionsguts mit Mikrowellen in einem Reaktionsrohr, dessen Längsachse sich in der Ausbreitungsrichtung der Mikrowellen in einem Monomode- Mikrowellenapplikator befindet. Bevorzugt beträgt dabei die Länge der

Bestrahlungszone mindestens die halbe Wellenlänge, besonders bevorzugt mindestens eine und bis zum 20-fachen, speziell das 2- bis 15-fache wie beispielsweise das 3- bis 10-fache der Wellenlänge der eingesetzten

Mikrowellenstrahlung. Mit dieser Geometrie kann Energie aus mehreren wie beispielsweise zwei, drei, vier, fünf, sechs oder mehr aufeinander folgenden Maxima der sich parallel zur Längsachse des Rohres ausbreitenden Mikrowelle auf das Reaktionsgut übertragen werden, was die Energieeffizienz des Verfahrens deutlich verbessert.

Die Bestrahlung des Reaktionsguts mit Mikrowellen erfolgt bevorzugt in einem weitgehend mikrowellentransparenten geraden Reaktionsrohr, das sich innerhalb eines mit einem Mikrowellengenerator verbundenen, als Mikrowellenapplikator fungierenden Hohlleiters befindet. Bevorzugt fluchtet das Reaktionsrohr axial mit einer zentralen Symmetrieachse dieses Hohlleiters. Der Hohlleiter ist bevorzugt als Hohlraumresonator ausgeformt. Bevorzugt wird die Länge des

Hohlraumresonators so dimensioniert, dass sich in ihm eine stehende Welle ausbildet. Weiterhin bevorzugt werden die im Hohlleiter nicht absorbierten

Mikrowellen an seinem Ende reflektiert. Durch Ausformung des

Mikrowellenapplikators als Resonator vom Reflexionstyp werden eine lokale Erhöhung der elektrischen Feldstärke bei gleicher vom Generator zugeführter Leistung und eine erhöhte Energieausnutzung erzielt.

Der Hohlraumresonator wird bevorzugt im E 0 i n -Mode betrieben, wobei n für eine ganze Zahl steht und die Anzahl der Feldmaxima der Mikrowelle entlang der zentralen Symmetrieachse des Resonators angibt. Bei diesem Betrieb ist das elektrische Feld in Richtung der zentralen Symmetrieachse des

Hohlraumresonators gerichtet. Es hat im Bereich der zentralen Symmetrieachse ein Maximum und nimmt zur Mantelfläche hin auf den Wert null ab. Diese

Feldkonfiguration liegt rotationssymmetrisch um die zentrale Symmetrieachse vor. Durch Verwendung eines Hohlraumresonators mit einer Länge, bei der n eine ganze Zahl ist, wird die Ausbildung einer stehenden Welle ermöglicht. Je nach der gewünschten Strömungsgeschwindigkeit des Reaktionsguts durch das

Reaktionsrohr, der benötigten Temperatur und der benötigten Verweilzeit im Resonator wird die Länge des Resonators relativ zu der Wellenlänge der eingesetzten Mikrowellenstrahlung ausgewählt. Bevorzugt ist n eine ganze Zahl von 1 bis 200, besonders bevorzugt von 2 bis 100, insbesondere von 3 bis 50 speziell von 4 bis 20 wie beispielsweise drei, vier, fünf, sechs, sieben, acht, neun oder zehn.

Die Eoin-Mode des Hohlraumresonators wird in Englischer Sprache auch als

TMoin-Mode (transversal-magnetisch) bezeichnet, siehe beispielsweise K. Lange, K.H. Löcherer, Taschenbuch der Hochfrequenztechnik", Band 2, Seite K21 ff.

Die Einstrahlung der Mikrowellenenergie in den als Mikrowellenapplikator fungierenden Hohlleiter kann über geeignet dimensionierte Löcher oder Schlitze erfolgen. In einer speziellen Ausführungsform des erfindungsgemäßen Verfahrens erfolgt die Bestrahlung des Reaktionsguts mit Mikrowellen in einem Reaktionsrohr, das sich in einem Hohlleiter mit koaxialem Übergang der Mikrowellen befindet. Für dieses Verfahren besonders bevorzugte Mikrowelleneinrichtungen sind aus einem Hohlraumresonator, einer Koppeleinrichtung zum Einkoppeln eines

Mikrowellenfeldes in den Hohlraumresonator und mit je einer Öffnung an zwei gegenüber liegenden Stirnwänden zum Hindurchführen des Reaktionsrohres durch den Resonator aufgebaut. Die Einkopplung der Mikrowellen in den

Hohlraumresonator erfolgt bevorzugt über einen Koppelstift, der in den

Hohlraumresonator hineinragt. Bevorzugt ist der Koppelstift als ein als

Kopplungsantenne fungierendes, bevorzugt metallisches Innenleiterrohr ausgeformt. In einer besonders bevorzugten Ausführungsform ragt dieser

Koppelstift durch eine der stirnseitigen Öffnungen in den Hohlraumresonator hinein. Besonders bevorzugt schließt sich das Reaktionsrohr an das

Innenleiterrohr des koaxialen Übergangs an und speziell wird es durch dessen Hohlraum hindurch in den Hohlraumresonator geführt. Bevorzugt fluchtet das

Reaktionsrohr axial mit einer zentralen Symmetrieachse des Hohlraumresonators, wozu der Hohlraumresonator bevorzugt je eine zentrische Öffnung an zwei gegenüber liegenden Stirnwänden zum Hindurchführen des Reaktionsrohres aufweist.

Die Einspeisung der Mikrowellen in den Koppelstift bzw. in das als

Kopplungsantenne fungierende Innenleiterrohr kann beispielsweise mittels einer koaxialen Anschlussleitung erfolgen. In einer bevorzugten Ausführungsform wird das Mikrowellenfeld über einen Hohlleiter dem Resonator zugeführt, wobei das aus dem Hohlraumresonator herausragende Ende des Koppelstifts in eine

Öffnung, die sich in der Wand des Hohlleiters befindet, in den Hohlleiter

hineingeführt ist und von dem Hohlleiter Mikrowellenenergie entnimmt und in den Resonator koppelt.

In einer speziellen Ausführungsform erfolgt die Bestrahlung des Reaktionsguts mit Mikrowellen in einem mikrowellentransparenten Reaktionsrohr, das sich

axialsymmetrisch in einem Eom-Rundhohlleiter mit koaxialem Übergang der Mikrowellen befindet. Dabei wird das Reaktionsrohr durch den Hohlraum eines als Kopplungsantenne fungierenden Innenleiterrohres in den Hohlraumresonator geführt. In einer weiteren bevorzugten Ausführungsform erfolgt die Bestrahlung des Salzes mit Mikrowellen in einem mikrowellentransparenten Reaktionsrohr, das durch einen E 0 i n -Hohlraumresonator mit axialer Einspeisung der Mikrowellen geführt wird, wobei die Länge des Hohlraumresonators so bemessen ist, dass sich n = 2 oder mehr Feldmaxima der Mikrowelle ausbilden. In einer weiteren bevorzugten Ausführungsform erfolgt die Bestrahlung des Reaktionsgemisches mit Mikrowellen in einem mikrowellentransparenten Reaktionsrohr, das durch einen Eom-Hohlraumresonator mit axialer Einspeisung der Mikrowellen geführt wird, wobei die Länge des Hohlraumresonators so bemessen ist, dass sich eine stehende Welle mit n = 2 oder mehr Feldmaxima der Mikrowelle ausbildet. In einer weiteren bevorzugten Ausführungsform erfolgt die Bestrahlung des Reaktionsguts mit Mikrowellen in einem mikrowellentransparenten Reaktionsrohr, das sich axialsymmetrisch in einem kreiszylindrischen Eoi n -Hohlraumresonator mit koaxialem Übergang der Mikrowellen befindet, wobei die Länge des

Hohlraumresonators so bemessen ist, dass sich n = 2 oder mehr Feldmaxima der Mikrowelle ausbilden. In einer weiteren bevorzugten Ausführungsform erfolgt die Bestrahlung des Reaktionsgemisches mit Mikrowellen in einem

mikrowellentransparenten Reaktionsrohr, das sich axialsymmetrisch in einem kreiszylindrischen E 0 i n -Hohlraumresonator mit koaxialem Übergang der

Mikrowellen befindet, wobei die Länge des Hohlraumresonators so bemessen ist, dass sich eine stehende Welle mit n = 2 oder mehr Feldmaxima der Mikrowelle ausbildet. Für das erfindungsgemäße Verfahren besonders geeignete

Eoi-Hohlraumresonatoren haben bevorzugt einen Durchmesser, der mindestens der halben Wellenlänge der verwendeten Mikrowellenstrahlung entspricht.

Bevorzugt beträgt der Durchmesser des Hohlraumresonators das 1 ,0- bis

10-fache, besonders bevorzugt das 1 ,1- bis 5-fache und insbesondere das 2,1- bis 2,6-fache der halben Wellenlänge der verwendeten Mikrowellenstrahlung.

Bevorzugt hat der E 0 i-Hohlraumresonator einen runden Querschnitt, was auch als Eoi-Rundhohlleiter bezeichnet wird. Besonders bevorzugt hat er eine zylindrische Form und speziell eine kreiszylindrische Form.

Bei kontinuierlicher Durchführung des erfindungsgemäßen Verfahrens ist das Reaktionsgemisch beim Verlassen der Bestrahlungszone oftmals noch nicht im chemischen Gleichgewicht. In einer bevorzugten Ausführungsform wird das Reaktionsgemisch daher nach Passieren der Bestrahlungszone direkt, das heißt ohne Zwischenkühlung in eine isotherme Reaktionsstrecke überführt, in der es für eine gewisse Zeit weiter auf Reaktionstemperatur gehalten wird. Erst nach

Verlassen der isothermen Reaktionsstrecke wird das Reaktionsgemisch gegebenenfalls entspannt und abgekühlt. Unter der direkten Überführung aus der Bestrahlungszone in die isotherme Reaktionsstrecke ist zu verstehen, dass zwischen Bestrahlungszone und isothermer Reaktionsstrecke keine aktiven Maßnahmen zum Zuführen und insbesondere zum Abführen von Wärme getroffen werden. Bevorzugt ist die Temperaturdifferenz zwischen Verlassen der

Bestrahlungszone bis zum Eintritt in die isotherme Reaktionsstrecke kleiner als ± 30 °C, bevorzugt kleiner ± 20 °C, besonders bevorzugt kleiner ± 10 °C und insbesondere kleiner ± 5 °C. In einer speziellen Ausführungsform entspricht die Temperatur des Reaktionsguts beim Eintritt in die isotherme Reaktionsstrecke der Temperatur beim Verlassen der Bestrahlungszone. Diese Ausführungsvariante ermöglicht eine schnelle und gezielte Erhitzung des Reaktionsgutes auf die gewünschte Reaktionstemperatur ohne partielle Überhitzung und sodann ein

Verweilen bei dieser Reaktionstemperatur für einen definierten Zeitraum. In dieser Ausführungsform wird das Reaktionsgut bevorzugt direkt nach Verlassen der isothermen Reaktionsstrecke möglichst schnell auf Temperaturen unterhalb 120 °C, bevorzugt unterhalb 100 °C und speziell unterhalb 60 °C abgekühlt.

Als isotherme Reaktionsstrecke kommen alle chemisch inerten Gefäße in

Betracht, die ein Verweilen des Reaktionsgemischs bei der in der

Bestrahlungszone eingestellten Temperatur ermöglichen. Unter isothermer Reaktionsstrecke wird verstanden, dass die Temperatur des Reaktionsgemischs in der isothermen Reaktionsstrecke gegenüber der Eintrittstemperatur auf ± 30 °C, bevorzugt auf ± 20 °C, besonders bevorzugt auf ± 10 °C und insbesondere auf ± 5 °C konstant gehalten wird. Somit hat das Reaktionsgemisch beim Verlassen der isothermen Reaktionsstrecke eine Temperatur, die maximal ± 30 °C, bevorzugt ± 20 °C, besonders bevorzugt ± 10 °C und insbesondere ± 5 °C von der Temperatur beim Eintritt in die isotherme Reaktionsstrecke abweicht. Neben kontinuierlich betriebenen Rührbehältern und Behälterkaskaden sind insbesondere Rohre als isotherme Reaktionsstrecke geeignet. Diese

Reaktionsstrecken können aus verschiedenen Materialien wie beispielsweise Metallen, Keramik, Glas, Quarz oder Kunststoffen bestehen mit der Maßgabe, dass diese unter den gewählten Temperatur- und Druckbedingungen mechanisch stabil und chemisch inert sind. Besonders bewährt haben sich dabei thermisch isolierte Gefäße. Die Verweilzeit des Reaktionsguts in der isothermen

Reaktionsstrecke kann beispielsweise über das Volumen der isothermen

Reaktionsstrecke eingestellt werden. Bei Verwendung von Rührbehältern und Behälterkaskaden hat es sich gleichermaßen bewährt, die Verweilzeit über den Füllgrad der Behälter einzustellen. In einer bevorzugten Ausführungsform ist die isotherme Reaktionsstrecke mit aktiven oder passiven Mischelementen

ausgerüstet.

In einer bevorzugten Ausführungsform wird als isotherme Reaktionsstrecke ein Rohr verwendet. Dabei kann es sich um eine Verlängerung des

mikrowellentransparenten Reaktionsrohres im Anschluss an die Bestrahlungszone oder auch um ein separates, mit dem Reaktionsrohr in Verbindung stehendes Rohr aus gleichem oder unterschiedlichem Material handeln. Über die Länge des Rohres und/oder seinen Querschnitt lässt sich bei gegebener Flussrate die

Verweilzeit des Reaktionsgutes bestimmen. Das als isotherme Reaktionsstrecke fungierende Rohr ist im einfachsten Fall thermisch isoliert, so dass die beim Eintritt des Reaktionsgutes in die isotherme Reaktionsstrecke herrschende Temperatur in den oben gegebenen Grenzen gehalten wird. Dem Reaktionsgut kann in der isothermen Reaktionsstrecke aber auch beispielsweise mittels eines

Wärmeträgers bzw. Kühlmediums gezielt Energie zu- oder abgeführt werden. Diese Ausführungsform hat sich insbesondere zum Anfahren der Vorrichtung bzw. des Verfahrens bewährt. So kann die isotherme Reaktionsstrecke beispielsweise als Rohrschlange oder als Rohrbündel ausgestaltet sein, die sich in einem Heizoder Kühlbad befindet oder in Form eines Doppelmantelrohres mit einem Heizoder Kühlmedium beaufschlagt werden. Die isotherme Reaktionsstrecke kann sich auch in einem weiteren Mikrowellenapplikator befinden, in dem das Reaktionsgut nochmals mit Mikrowellen behandelt wird. Dabei können sowohl im Monomode- wie auch Multimode arbeitende Applikatoren zum Einsatz kommen.

Die Verweilzeit des Reaktionsgutes in der isothermen Reaktionsstrecke wird bevorzugt so bemessen, dass der durch die herrschenden Bedingungen definierte thermische Gleichgewichtszustand erreicht wird. Üblicherweise liegt die

Verweilzeit zwischen 1 Sekunde und 10 Stunden, bevorzugt zwischen

10 Sekunden und 2 Stunden, besonders bevorzugt zwischen 20 Sekunden und 60 Minuten wie beispielsweise zwischen 30 Sekunden und 30 Minuten. Weiterhin bevorzugt liegt das Verhältnis zwischen Verweilzeit des Reaktionsgutes in der isothermen Reaktionsstrecke zur Verweilzeit in der Bestrahlungszone zwischen 1 :2 und 100:1 , besonders bevorzugt 1 :1 bis 50:1 und insbesondere zwischen 1:1 ,5 und 10:1.

Zur Erzielung besonders hoher Umsetzungsgrade hat es sich in vielen Fällen bewährt, das erhaltene Reaktionsprodukt erneut der Mikrowellenbestrahlung auszusetzen, wobei gegebenenfalls das Verhältnis der eingesetzten Reaktanden um verbrauchte oder unterschüssige Edukte ergänzt werden kann.

Das erfindungsgemäße Verfahren ermöglicht die polymeranaloge Modifizierung Hydroxylgruppen tragender Polymere und insbesondere von Polyvinylalkohol mit Hydroxycarbonsäuren bzw. Hydroxycarbonsäureestern in kontinuierlichen wie auch diskontinuierlichen Verfahren und somit in technisch interessanten Mengen. Dabei entstehen neben Wasser bzw. niederem Alkohol keine zu entsorgenden und die Umwelt belastenden Nebenprodukte. Ein weiterer Vorteil des

erfindungsgemäßen Verfahrens liegt in der überraschenden Beobachtung, dass die polymeranalogen Kondensationsreaktionen in wässriger Lösung

vorgenommen werden können, da Wasser das für Hydroxylgruppen tragende Polymere wie auch für die meisten Hydroxycarbonsäuren am besten geeignete Lösemittel ist und zudem auch unter ökologischen Aspekten vorteilhaft ist. Durch die Zugabe bestimmter polarer organischer Lösemittel kann die Umsetzung mit weniger wasserlöslichen Hydroxycarbonsäuren bzw. deren Estern erleichtert werden. Insbesondere ist das erfindungsgemäße Verfahren für partielle

Veresterungen von Hydroxylgruppen tragenden Polymeren geeignet, da die Reaktionsmischungen trotz Viskositätsunterschieden zwischen Hydroxylgruppen tragenden Polymeren A) und Hydroxycarbonsäuren B1) bzw.

Hydroxycarbonsäureestern B2) zu einer homogenen Verteilung der

Hydroxycarbonsäurereste über die gesamte Kettenlänge des Polymers führen. Das erfindungsgemäße Verfahren erlaubt dabei die reproduzierbare Herstellung entlang ihrer Kettenlänge statistisch modifizierter Produkte. Die Vielzahl der für das erfindungsgemäße Verfahren in technischen Mengen verfügbaren

Hydroxycarbonsäuren und Hydroxycarbonsäureester öffnet eine große Bandbreite an Modifzierungsmöglichkeiten. Nach dem erfindungsgemäßen Verfahren lassen sich durch geeignete Wahl der Hydroxycarbonsäure beispielsweise das

Quellverhalten, die Löslichkeit in Wasser bzw. organischen Lösemitteln, die

Adhäsion auf unterschiedlich polaren Substraten, die mechanische Festigkeit und die thermische Stabilität der Polymere gezielt modifizieren. So wird durch

Umsetzung mit Hydroxycarbonsäuren bzw. deren Estern die Wasserlöslichkeit der Polymere insbesondere in kaltem Wasser weiter verbessert. Gleichzeitig steigt die Zugfestigkeit der Polymere bei weitgehend unveränderter Dehnbarkeit deutlich an, ohne dass deren Lösungsviskosität nennenswert zunimmt und sie somit nach etablierten Verfahren appliziert werden können. Die nach dem

erfindungsgemäßen Verfahren modifizierten Polymere sind vielseitig einsetzbar wie beispielsweise als Faserschlichte, Klebstoffe, Emulgatoren, Laminierung für Sicherheitsglas und Kunststoffe, Papierbeschichtung, Verdicker für Latices, Bindemittel für Dünger, als wasserlösliche wie auch wasserunlösliche Folien wie beispielsweise als selbstauflösende Verpackungsfolien, als Zusatz zu Tinten und Beton sowie als temporärer, mit Wasser entfernbarer Oberflächenschutz geeignet.

Beispiele Die diskontinuierliche Mikröwellenbestrahlung erfolgte in einem Single-Mode

Mikrowellenreaktor vom Typ„Initiator ® " der Firma Biotage bei einer Frequenz von 2,45 GHz. Die Temperaturmessung erfolgte über einen IR-Sensor. Als

Reaktionsgefäße dienten geschlossene, druckfeste Glasküvetten (Druckviole) mit einem Volumen von 20 ml, in denen mit Magnetrührung homogenisiert wurde.

Die Mikrowellenleistung wurde über die Versuchsdauer jeweils in der Art eingestellt, dass die gewünschte Temperatur des Reaktionsguts so schnell wie möglich erreicht und anschließend über den in den Versuchsbeschreibungen angegebenen Zeitraum konstant gehalten wurde. Nach Beendigung der

Mikrowellenbestrahlung wurde die Glasküvette mit Druckluft abgekühlt.

Kontinuierliche Bestrahlungen der Reaktionsgemische mit Mikrowellen erfolgten in einem Reaktionsrohr (60 x 1 cm) aus Aluminiumoxid, das sich axialsymmetrisch in einem zylindrischen Hohlraumresonator (60 x 10 cm) befand. An einer der

Stirnseiten des Hohlraumresonators verlief das Reaktionsrohr durch den

Hohlraum eines als Kopplungsantenne fungierenden Innenleiterrohres. Das von einem Magnetron erzeugte Mikrowellenfeld mit einer Frequenz von 2,45 GHz wurde mittels der Kopplungsantenne in den Hohlraumresonator eingekoppelt (Eoi-Hohlraumapplikator; Monomode), in dem sich eine stehende Welle

ausbildete. Bei Verwendung einer isothermen Reaktionsstrecke wurden die erhitzten Reaktionsgemische unmittelbar nach Verlassen des Reaktionsrohres durch ein thermisch isoliertes Edelstahlrohr (3,0 m x 1 cm, sofern nicht anders angegeben) gefördert. Nach Verlassen des Reaktionsrohres bzw. bei Verwendung der isothermen Reaktionsstrecke nach Verlassen derselbigen wurden die

Reaktionsgemische auf Atmosphärendruck entspannt, sofort mittels eines

Intensivwärmetauschers auf die angegebenen Temperatur abgekühlt. Die Mikrowellenleistung wurde über die Versuchsdauer jeweils in der Art eingestellt, dass die gewünschte Temperatur des Reaktionsgutes am Ende der Bestrahlungszone konstant gehalten wurde. Die in den Versuchsbeschreibungen genannten Mikrowellenleistungen repräsentieren daher den zeitlichen Mittelwert der eingestrahlten Mikrowellenleistung. Die Temperaturmessung des

Reaktionsgemischs wurde direkt nach Verlassen der Bestrahlungszone mittels Pt100 Temperatursensor vorgenommen. Vom Reaktionsgemisch nicht direkt absorbierte Mikrowellenenergie wurde an der der Kopplungsantenne entgegen liegenden Stirnseite des Hohlraumresonators reflektiert; die vom

Reaktionsgemisch auch beim Rücklauf nicht absorbierte und in Richtung des Magnetrons zurück gespiegelte Mikrowellenenergie wurde mit Hilfe eines

Prismensystems (Zirkulator) in ein Wasser enthaltendes Gefäß geleitet. Aus der Differenz zwischen eingestrahlter Energie und Aufheizung dieser Wasserlast wurde die in der Bestrahlungszone eingetragene Mikrowellenenergie berechnet Mittels einer Hochdruckpumpe und eines Druckentlastungsventils wurde die Reaktionsmischung im Reaktionsrohr unter einen solchen Arbeitsdruck gesetzt, der ausreichte, um alle Edukte und Produkte bzw. Kondensationsprodukte stets im flüssigen Zustand zu halten. Die Reaktionsgemische wurden mit einer konstanten Flussrate durch die Vorrichtung gepumpt und die Verweilzeit im Reaktionsrohr durch Modifizierung der Strömungsgeschwindigkeit eingestellt.

Die Analytik der Reaktionsprodukte erfolgte mittels 1 H-NMR-Spektroskopie bei 500 MHz in CDCI 3 . Poylvinylalkohol wird hier auch als PVA abgekürzt. Beispiel 1 : Kontinuierliche Veresterung von Poly(vinylalkohol) mit Milchsäure

In einem 10 I Büchi-Rührautoklaven mit Gaseinleitungsrohr, Rührer,

Innenthermometer und Druckausgleich wurde eine Lösung aus 1 ,4 kg

Polyvinylalkohol (Mowiol ® 4-98, Molekulargewicht 27.000 g/mol, Hydrolysegrad 98 %) in 5,6 kg Wasser vorgelegt, mit 25 g p-Toluolsulfonsäure versetzt und auf 55 °C erwärmt. Bei dieser Temperatur wurde unter Rühren über einen Zeitraum von einer Stunde eine Lösung von 0,85 kg Milchsäure in Form von Lactol 90 (90 %ige Lösung in Wasser; 8,5 mol Milchsäure) in 1 kg Isopropanol zugegeben.

Das so erhaltene Reaktionsgemisch wurde bei einem Arbeitsdruck von 35 bar kontinuierlich mit 4,8 l/h durch das Reaktionsrohr gepumpt und einer

Mikrowellenleistung von 2,0 kW ausgesetzt, von denen 88 % vom Reaktionsgut absorbiert wurden. Die Verweilzeit des Reaktionsgemischs in der

Bestrahlungszone betrug ca. 50 Sekunden. Beim Verlassen der Bestrahlungszone hatte das Reaktionsgemisch eine Temperatur von 186 °C und wurde direkt mit dieser Temperatur in die isotherme Reaktionsstrecke überführt. Am Ende der isothermen Reaktionsstrecke hatte das Reaktionsgemisch eine Temperatur von 172 °C. Das Reaktionsgemisch wurde direkt nach Verlassen der Reaktionsstrecke auf Raumtemperatur abgekühlt und mit Hydrogencarbonat-Lösung auf pH 4 eingestellt.

Das Reaktionsprodukt war eine homogene, leicht gelbliche Lösung mit niedriger Viskosität. Nach Abdampfen des Lösemittels und Umfällen des Rückstands mit Methanol aus wässriger Lösung resultierte eine viskose Masse, deren

IR-Spektrum für Ester charakteristische Banden bei 1735 cm "1 und 1245 cm "1 mit einer gegenüber dem eingesetzten Polyvinylalkohol deutlich erhöhten Intensität zeigt. Charakteristische Signale im H-NMR-Spektrum bei 4,4 ppm zeigen

Methinprotonen des veresterten Polyvinylalkohols an. Durch Vergleich dieses Signals mit den Signalen der übrigen Methinprotonen des PVA-Rückgrats zwischen 3,5 und 4,1 ppm lässt sich ein Umsetzungsgrad von 17 mol-% der Alkoholgruppen des eingesetzten Polyvinylalkohols abschätzen. Ein breites Multiplett bei 5,2 ppm deutet weiterhin auf die Anwesenheit von oligomeren Milchsäureeinheiten hin.

Beispiel 2: Kontinuierliche Veresterung von Poly(vinylalkohol) Mowiol ® 18-88 mit Milchsäure

In einem 10 I Büchi-Rührautoklaven mit Gaseinleitungsrohr, Rührer,

Innenthermometer und Druckausgleich wurde eine Lösung aus 500 g

Polyvinylalkohol (Mowiol ® 18-88, Molekulargewicht 130.000 g/mol, Hydrolysegrad 88 %) in 6,5 kg Wasser vorgelegt, mit 10 g p-Toluolsulfonsäure versetzt und auf 50 °C erwärmt. Bei dieser Temperatur wurde unter Rühren über einen Zeitraum von einer Stunde eine Lösung von 400 g Milchsäure in Form von Lactol 90 (4 mol Milchsäure) in 2 kg Isopropanol zugegeben.

Das so erhaltene Reaktionsgemisch wurde bei einem Arbeitsdruck von 35 bar kontinuierlich mit 5 l/h durch das Reaktionsrohr gepumpt und einer

Mikrowellenleistung von 2,3 kW ausgesetzt, von denen 91 % vom Reaktionsgut absorbiert wurden. Die Verweilzeit des Reaktionsgemischs in der

Bestrahlungszone betrug ca. 48 Sekunden. Beim Verlassen der Bestrahlungszone hatte das Reaktionsgemisch eine Temperatur von 192 °C und wurde direkt mit dieser Temperatur in die isotherme Reaktionsstrecke überführt. Am Ende der isothermen Reaktionsstrecke hatte das Reaktionsgemisch eine Temperatur von 185 °C. Das Reaktionsgemisch wurde direkt nach Verlassen der Reaktionsstrecke auf Raumtemperatur abgekühlt und mit Hydrogencarbonat-Lösung auf pH 4 eingestellt.

Das Reaktionsprodukt war eine homogene, leicht gelbliche, viskose Lösung. Nach Abdampfen des Lösemittels resultierte eine viskose Masse, deren IR-Spektrum für Ester charakteristische Banden bei 1735 cm "1 und 1245 cm "1 mit einer gegenüber dem eingesetzten Polyvinylalkohol deutlich erhöhten Intensität zeigt. Nach

Abdampfen des Lösemittels und Umfällen des Rückstands mit Methanol aus wässriger Lösung resultierte eine viskose Masse, deren IR-Spektrum für Ester charakteristische Banden bei 1735 cm "1 mit einer gegenüber dem eingesetzten Polyvinylalkohol deutlich erhöhten Intensität zeigt. Charakteristische Signale im 1 H-NMR-Spektrum bei 4,4 ppm zeigen Methinprotonen veresterten

Polyvinylalkohols an. Durch Vergleich dieses Signals mit den Signalen der übrigen Methinprotonen des PVA-Rückgrats zwischen 3,5 und 4,1 ppm lässt sich ein Umsetzungsgrad von 23 mol-% der Alkoholgruppen des eingesetzten

Polyvinylalkohols abschätzen. Ein breites Multiplett bei 5,2 ppm deutet weiterhin auf die Anwesenheit von oligomeren Milchsäureeinheiten hin.

Beispiel 3: Kontinuierliche Veresterung von Poly(vinylalkohol) mit

4-Hydroxybuttersäure

In einem 10 I Büchi-Rührautoklaven mit Gaseinleitungsrohr, Rührer,

Innenthermometer und Druckausgleich wurde eine Lösung aus 1 ,4 kg

Polyvinylalkohol (Mowiol ® 4-98, Molekulargewicht 27.000 g/mol, Hydrolysegrad 98 %) in 6 kg Wasser vorgelegt, mit 20 g p-Toluolsulfonsäure versetzt und auf 50 °C erwärmt. Bei dieser Temperatur wurde über einen Zeitraum von einer Stunde unter Rühren eine Lösung von 1 ,04 kg 4-Hydroxybuttersäure (10 mol) in 1 kg Isopropanol zugegeben.

Das so erhaltene Reaktionsgemisch wurde bei einem Arbeitsdruck von 34 bar kontinuierlich mit 5 l/h durch das Reaktionsrohr gepumpt und einer

Mikrowellenleistung von 2,2 kW ausgesetzt, von denen 90 % vom Reaktionsgut absorbiert wurden. Die Verweilzeit des Reaktionsgemischs in der

Bestrahlungszone betrug ca. 48 Sekunden. Beim Verlassen der Bestrahlungszone hatte das Reaktionsgemisch eine Temperatur von 195 °C und wurde direkt mit dieser Temperatur in die isotherme Reaktionsstrecke überführt. Am Ende der isothermen Reaktionsstrecke hatte das Reaktionsgemisch eine Temperatur von 188 °C. Das Reaktionsgemisch wurde direkt nach Verlassen der Reaktionsstrecke auf Raumtemperatur abgekühlt und der Katalysator mit Hydrogencarbonat-Lösung neutralisiert. HO

Das Reaktionsprodukt war eine homogene, farblose Lösung mit niedriger

Viskosität. Nach Abdampfen des Lösemittels und Umfallen des Rückstands mit Methanol aus wässriger Lösung resultierte eine viskose Masse, deren

IR-Spektrum für Ester charakteristische Banden bei 1735 cm "1 und 1245 cm "1 mit einer gegenüber dem eingesetzten Polyvinylalkohol deutlich erhöhten Intensität zeigt. Charakteristische Signale im H-NMR-Spektrum bei 4,5 ppm zeigen die Bildung von Estern des Poiyvinylalkohols (Methinproton in Nachbarschaft zu Estergruppierung). Durch Vergleich des Integrals dieser Signale mit den Signalen der Methylenprotonen des PVA-Rückgrats zwischen 1 ,5 und 1 ,8 ppm, lässt sich ein Umsetzungsgrad von 20 mol-% der Alkoholgruppen des eingesetzten PVA abschätzen.

Beispiel 4: Veresterung von Poly(vinylalkohol) mit Weinsäure

10 ml einer Mischung aus 4 g Polyvinylalkohol (Mowiol ® 4-88, Molekulargewicht 31.000 g/mol; Hydrolysegrad 88 %) in 6 g Wasser und 4 g Isopropanol, 50 mg p-Toluolsulfonsäure und 0,5 g Weinsäure wurden im diskontinuierlichen

Mikrowellenreaktor auf eine Temperatur von 185 °C erhitzt, wobei sich ein Druck von etwa 19 bar einstellte. Nach Erreichen des thermischen Gleichgewichts (nach ca. 1 Minute) wurde 15 Minuten lang unter weiterer Mikrowellenbestrahlung bei dieser Temperatur und diesem Druck gehalten. Nach Beendigung der

Mikrowellenbestrahlung wurde das Reaktionsgemisch auf Raumtemperatur abgekühlt und der Katalysator mit Hydrogencarbonat-Lösung neutralisiert.

Das Reaktionsprodukt war eine homogene, farblose, viskose, opaleszierende Lösung. Nach Abdampfen des Lösemittels resultierte ein homogener, nicht klebriger Film, dessen IR-Spektrum für Ester des Poiyvinylalkohols

charakteristische Banden bei 1735 cm "1 und 1245 cm '1 mit einer gegenüber dem eingesetzten Polyvinylalkohol erhöhten Intensität zeigt. Versuche, das getrocknete Umsetzungsprodukt in DMF oder DMSO zu lösen scheiterten, was die erwartete Vernetzung des Poiyvinylalkohols anzeigt. Lediglich ein Quellen auf umgerechnet etwa die doppelte Masse des eingesetzten Polymers konnte nach einigen Stunden beobachtet werden.

Zur Charakterisierung der Eigenschaften der modifizierten Polymere wurden folgende Methoden angewandt:

Methode 1) Herstellung von Polymerlösungen:

500 ml entmineralisiertes Wasser werden auf 90 °C erwärmt und dann die benötigte Menge an (modifiziertem) Polymer unter ständigem Rühren langsam eingestreut, so dass sich keine Klumpen bilden und eine klare Lösung entsteht. Nach dem Abkühlen wird das durch Verdunstung geschrumpfte Volumen mit entmineralisiertem Wasser wieder auf 500 ml aufgefüllt. Methode 2) Herstellung eines Polymerfilms:

100 ml einer 6 Gew.-%igen Polymerlösung (6 Gew.-%ig bzgl. Trockengehalt) werden auf eine handelsübliche Filmgießplatte gegossen und die Lösung für 2 - 3 Tage an der Luft bei Raumtemperatur getrocknet. Filme, die zur Bestimmung der Filmlöslichkeit benutzt werden, werden zusätzlich mit Patentblau V-Lösung eingefärbt (10 ml je 100 ml Polymerlösung).

Methode 3) Bestimmung der Filmlöslichkeit:

Aus einem wie oben beschrieben hergestellten Polymerfilm wird ein ca. 2 x 2 cm großes Stück ausgeschnitten und dieses in einen Rahmen eingespannt. Der Rahmen wird in das zu prüfende Lösungsmittel bei der zu prüfenden Temperatur (beispielsweise Wasser bei 80 °C) eingehängt und das Lösungsmittel langsam gerührt. Mit einer Stoppuhr wird die Zeit bis zur vollständigen Auflösung des Films gemessen. Ist der Film nach 600 s (= 10 min) noch nicht vollständig gelöst, wird der Film als„unlöslich" bezeichnet, ansonsten die Zeit bis zur vollständigen Auflösung notiert. Methode 4) Bestimmung der mechanischen Eigenschaften der Polymerfilme: Aus einem wie oben beschrieben hergestellten Polymerfilm (ohne Zusatz von Patentblau V-Lösung) wird ein ca. 10 x 2 cm großes Stück ausgeschnitten und dieses einem Zugdehnungsexperiment mit einer handelsüblichen Vorrichtung unterworfen. Die Zugfestigkeit gibt die maximale Kraft an, der die Folie bis zum Reissen standhält.

Methode 5) Bestimmung der Viskosität von Polymerlösungen:

Gemäß dem oben beschriebenen Verfahren zur Herstellung von Polymerlösungen wird eine 4 Gew.-%ige Polymerlösung (bzgl. Trockengehalt) hergestellt und deren Viskosität bei 20 °C mit einem handelsüblichen Brookfield-Viskosimeter bei 20 Umdrehungen pro Minute (rpm) bestimmt. Die Wahl einer geeigneten Spindel erfolgt je nach Viskosität der Lösung. Mit diesen Methoden wurden für die eingesetzten Polyvinylalkohole und die modifizierten Polymere folgende Daten ermittelt :

Die modifizierten Polymere zeigen im Vergleich zu den zu Grunde liegenden Poly(vinylalkoholen) eine deutlich verbesserte Löslichkeit in Wasser bei 20 °C wie auch bei 80 °C. Während die nicht modifizierten Poly(vinylalkohole) bei

Raumtemperatur (20 °C) überhaupt nicht löslich sind, lösen sich die modifizierten 4b

Polymere innerhalb von 3 Minuten vollständig auf. Bei beiden Temperaturen gibt es keine Anzeichen für das Vorhandensein von Polymeranteilen mit abweichender Löslichkeit. Die modifizierten Filme weisen eine gegenüber bekannten

Polyvinylalkoholen deutlich erhöhte Zugfestigkeit bei leicht erhöhter Dehnbarkeit auf. Die Lösungsviskosität der Polymere bleibt durch die Modifizierung allerdings weitgehend unverändert, so dass die modifizierten Polymere wie

Standardprodukte appliziert werden können.