Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PROCESS FOR THE SYNTHESIS OF N−ACYL−2−AMINO−4−ALKOXY−5−NITROBENZOIC ACIDS
Document Type and Number:
WIPO Patent Application WO/2003/066575
Kind Code:
A1
Abstract:
The invention claimed herein provides a process to oxidize N− (5−alkoxy−2−methyl−4−nitrophenyl) acetamides to N−acyl−2−amino−4−alkoxy−5−nitrobenzoic acids using potassium permanganate in the presence of magnesium sulfate in aqueous sulfolane or aqueous pyridine.

Inventors:
DUNCAN SCOTT MASON
OSUMA AUGUSTINE TOBI
DAIGNEAULT SYLVAIN
BERNATCHEZ MICHEL
Application Number:
PCT/US2003/003437
Publication Date:
August 14, 2003
Filing Date:
February 04, 2003
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
WYETH CORP (US)
International Classes:
C07C231/12; C07C233/54; C07D215/54; C07D215/44; C07D215/56; (IPC1-7): C07C231/12; C07D215/54; C07D215/56
Domestic Patent References:
WO2001068186A22001-09-20
Attorney, Agent or Firm:
Moran, Daniel B. (Patent Law Department Five Giralda Farm, Madison NJ, US)
Willeman, David F. c/o Wyeth Laboratories (Huntercombe Lane South Taplo, Maidenhead Berkshire SL6 0PH, GB)
Download PDF:
Claims:
What is claimed :
1. A process for the preparation of a Nacyl2amino4alkoxy5nitrobenzoic acid compound having the structural formula wherein: R3 isOR ; and R is alkyl of 1 to 3 carbon atoms; which process comprises: oxidizing a N (5alkoxy2methyl4nitrophenyl) acetamide compound having the structural formula where R3 isOR; and R is alkyl of 1 to 3 carbon atoms; with potassium permanganate in solution in a solvent system comprising water and a solvent in the presence of magnesium sulfate.
2. The process of claim 1 wherein potassium permanganate is present in the amount of about 3 to 3.5 molar equivalents.
3. 3 The process of claim 1 wherein the solvent system is aqueous sulfolan.
4. The process of claim 3 wherein the sulfolan to water volume ratio is present at about 19: 1 to 1: 1.
5. The process of claim 1 wherein the solvent system is aqueous pyridine.
6. The process of claim 1 wherein the ratio of magnesium sulfate to potassium permanganate is present in the amount of about 1: 4 equivalents of magnesium sulfate to about 3: 3.5 molar equivalents of potassium permanganate.
7. The process of claim 1 wherein the reaction temperature is about 80 to 110°C.
8. The process of claim 7 wherein the reaction temperature is about 8090°C.
9. A process for the preparation of a Nacyl2amino4alkoxy5nitrobenzoic acid compound having the structural formula wherein: R3 isOR; and R is alkyl of 1 to 3 carbon atoms; which process comprises the steps: <BR> <BR> a. ) heating to 8090°C an aqueous solution, containing sulfolan as a solvent, and a N (5alkoxy2methyl4nitrophenyl) acetamide compound having the structural formula wherein: R3 isOR; and R is alkyl of 1 to 3 carbon atoms; b. ) adding magnesium sulfate to the aqueous solution;<BR> c. ) adding sufficient potassium permanganate to the aqueous solution to complete oxidation; <BR> <BR> d. ) filtering the hot solution;<BR> e. ) acidifying the solution to a pH of about 2 to 4 with cooling and collecting the N acyl2amino4alkoxy5nitrobenzoic acid.
10. The process of claim 9 wherein potassium permanganate is present in the amount of about 3 to 3.5 molar equivalents.
11. The process of claim 9 wherein the sulfolan to water volume ratio is present at about 19: 1 to 1: 1.
12. The process of claim 9 wherein the ratio of magnesium sulfate to potassium permanganate is present in the amount of about 1: 4 equivalents of magnesium sulfate to about 3: 3.5 molar equivalents of potassium permanganate.
13. A process for the manufacture of a compound having the formula I wherein: X is cycloalkyl of 3 to 7 carbon atoms, which may be optionally substituted with one or more alkyl of 1 to 6 carbon atom groups; or is a pyridinyl, pyrimidinyl, or phenyl ring; wherein the pyridinyl, pyrimidinyl, or phenyl ring may be optionally mono, di, or trisubstituted with a substituent selected from the group consisting of halogen, alkyl of 16 carbon atoms, alkenyl of 26 carbon atoms, alkynyl of 26 carbon atoms, azido, hydroxyalkyl of 16 carbon atoms, halomethyl, alkoxymethyl of 27 carbon atoms, alkanoyloxymethyl of 27 carbon atoms, alkoxy of 16 carbon atoms, alkylthio of 16 carbon atoms, hydroxy, trifluoromethyl, cyano, nitro, carboxy, carboalkoxy of 27 carbon atoms, carboalkyl of 27 carbon atoms, phenoxy, phenyl, thiophenoxy, benzoyl, benzyl, amino, alkylamino of 16 carbon atoms, dialkylamino of 2 to 12 carbon atoms, phenylamino, benzylamino, alkanoylamino of 16 carbon atoms, alkenoylamino of 38 carbon atoms, alkynoylamino of 38 carbon atoms, and benzoylamino ; R3 isOR; R is alkyl of 1 to 3 carbon atoms; n is 01; Y isNH,O,S, orNR10; Rl 0 is alkyl of 16 carbon atoms; R2 is in which each R8 is independently selected from hydrogen, alkyl of 16 carbon atoms, aminoalkyl of 16 cabon atoms, Nalkylaminoalkyl of 29 carbon atoms, N, N dialkylaminoalkyl of 312 carbon atoms, Ncycloalkylaminoalkyl of 412 carbon atoms, NcycloalkylNalkylaminoalkyl of 518 carbon atoms, N, N dicycloalkylaminoalkyl of 718 carbon atoms, morpholinoNalkyl wherein the alkyl group is 16 carbon atoms, piperidinoNalkyl wherein the alkyl group is 16 carbon atoms, NalkylpiperidinoNalkyl wherein either alkyl group is 16 carbon atoms, azacycloalkylNalkyl of 311 carbon atoms, hydroxyalkyl of 16 carbon atoms, alkoxyalkyl of 28 carbon atoms, carboxy, carboalkoxy of 16 carbon atoms, phenyl, carboalkyl of 27 carbon atoms, chloro, fluoro, and bromo; or a pharmaceutical acceptable salt thereof; which process comprises: (a) preparing a Nacyl2amino4alkoxy5nitrobenzoic acid compound by the process of any one of claims 1 to 12 and (b) converting the Nacyl2amino4alkoxy5nitrobenzoic acid compound so prepared into a compound having formula I as defined and illustrated above or an acid addition salt thereof.
14. A process as claimed in claim 13, in which part (b) of the process comprises (i) cleavage of the acyl group of the Nacyl2amino4alkoxy5nitrobenzoic acid compound so as to form a 2amino4 (Cl C3 alkoxy)5nitrobenzoic acid; (ii) converting the resultant 2amino4(C1C3 alkoxy)5nitrobenzoic acid into a nitro compound having formula I as illustrated in claim 13 in which R, X, Y and n are as defined in claim 13 and R2 is nitro; (iii) reducing this nitro compound so as to form an amino compound having formula I as illustrated in claim 13 in which R, X, Y and n are as defined in claim 13 and R2 is amino; and (iv) subjecting this amino compound to amide formation by reaction with a carboxylic acid having the formula (Rg) 2C = C R8COOH (in which each R8 is as defined in claim 13) or a reactive derivative thereof.
15. A process as claimed in claim 13 or 14 carried out so as to prepare N {4 [ (3 chloro4fluorophenyl) amino]3cyano7ethoxy6quinolinyl}4(dimethylamino)2 butenamide.
Description:
PROCESS FOR THE SYNTHESIS OF N-ACYL-2-AMINO-4-ALKOXY-5- NITROBENZOIC ACIDS BACKGROUND OF THE INVENTION FIELD OF THE INVENTION This invention relates to a process for the synthesis of N-acyl-2-amino-4- alkoxy-5-nitrobenzoic acids by the oxidation of N- (5-alkoxy-2-methyl-4- nitrophenyl) acetamides using potassium permanganate in aqueous solvent mixtures.

DESCRIPTION OF THE PRIOR ART Potassium permanganate is a widely used reagent for the oxidation of benzylic carbon atoms to the corresponding carboxylic acid. However, oxidations do not always work well for substrates having limited water solubility and furthermore, potassium permanganate has limited solubility in organic solvents. The problem with insolubility has been addressed to some extent by the use of biphasic conditions employing water and either benzene or a hydrocarbon solvent as the organic phase, or, alternatively by using a phase transfer catalyst. Unfortunately, many organic compounds or substrates have poor solubility in either water or hydrocarbon solvents. The limited contact between the oxidant and the substrate results in long reaction times, poor yields and the formation of contaminates which make purification difficult. Further, many typical organic solvents cannot be used as a co- solvent with potassium permanganate because being such a potent oxidant, the organic solvents are themselves oxidized, leading to diverse and complicated reaction mixtures. The use of a phase transfer catalyst can lead to further purification problems.

The N-acyl-2-amino-4-alkoxy-5-nitrobenzoic acids that are obtained according to the process of this invention are useful intermediates to produce 3- cyanoquinolines. The 3-cyano quinolines are used in the synthesis, as described in U. S. Pat. No. 6,002, 008 of certain protein tyrosine kinase (PTK) inhibitors useful for

the treatment of cancer. The toluidines that are required to produce the desired N- acyl-2-amino-4-alkoxy-5-nitrobenzoic acids have very poor solubility in water. The problem of poor water solubility contributes to incomplete reactions and variable yields when performing the oxidation in water alone with potassium permanganate as the oxidizing agent in the presence of magnesium sulfate. The accelerated decomposition of potassium permanganate, under aqueous conditions requires a very large excess of the oxidant resulting in large volumes of inorganic waste.

Additionally, the low solubility of both the substrate and the oxidant in water contribute to the inefficiency of the total process by requiring high dilutions (>40: 1).

It is also known that certain substrates, which include derivatives of toluidine such as N- (5-alkoxy-2-methyl-4-nitrophenyl) acetamides, can catalyze the decomposition of potassium permanganate. As mentioned above, solubility and decomposition problems contribute to the need for a large excess of potassium permanganate. Also, isolating and solving problems of potassium permanganate oxidations are difficult because of the subtleties of the equilibrium between the various oxidation states of manganese.

The N- (5-alkoxy-2-methyl-4-nitrophenyl) acetamides used as the oxidation substrates are prepared with acetic anhydride using conditions well described in the <BR> <BR> art (e. g. , A. Ono in Chem. Ind. (London), 4,130, 1982). As described, adding N- (5- alkoxy-2-methyl-4-nitrophenyl) acetamides as a solid to an aqueous mixture of the potassium permanganate and magnesium sulfate at about 80-90°C followed by heating the reaction mixture to reflux for 1 hour further required adding additional potassium permanganate and magnesium sulfate as necessary at 30 minute intervals to fully oxidize the N- (5-alkoxy-2-methyl-4-nitrophenyl) acetamides.

Typically, 4 to 5 equivalents of the oxidant are necessary under these conditions.

The yield of the oxidation under totally aqueous conditions is however improved by adding the substrate as a hot slurry in water. However, the disadvantage to this procedure becomes apparent on larger scale when one needs to prepare the substrate as a hot slurry in water followed by adding the slurry to the aqueous potassium permanganate.

It is, therefore, an object of the present invention to provide a new process for the preparation of N-acyl-2-amino-4-alkoxy-5-nitrobenzoic acids which avoids the solubility problems associated with potassium permanganate in organic solvents and to additionally solve the problem of needing a large excess of potassium permanganate.

Thus, there is a need in the art for a process which overcomes the problems of solubility and the need for excess potassium permanganate when oxidizing, in particular, toluidines.

Those and other objects of the present invention will become more apparent from the detailed description thereof set forth below.

SUMMARY OF THE INVENTION The present invention provides a new process for the preparation of N-acyl-2- amino-4-alkoxy-5-nitrobenzoic acids having the structural formula wherein: R3 is-OR and R is alkyl of 1 to 3 carbon atoms; which process comprises oxidizing N- (5-alkoxy-2-methyl-4-nitrophenyl) acetamides having the formula

where R3 is-OR; and R is alkyl of 1 to 3 carbon atoms; with potassium permanganate in an aqueous solvent mixture to afford N-acyl-2- amino-4-alkoxy-5-nitrobenzoic acids after acidification. The oxidation is generally carried out in solution in a solvent system comprising water and a solvent, normally an organic solvent.

The invention also provides a process for the manufacture of a compound having the formula I I wherein: X is cycloalkyl of 3 to 7 carbon atoms, which may be optionally substituted with one or more alkyl of 1 to 6 carbon atom groups; or is a pyridinyl, pyrimidinyl, or phenyl ring; wherein the pyridinyl, pyrimidinyl, or phenyl ring may be optionally mono-, di-, or tri-substituted with a substituent selected from the group consisting of halogen, alkyl of 1-6 carbon atoms, alkenyl of 2-6 carbon atoms, alkynyl of 2-6 carbon atoms, azido, hydroxyalkyl of 1-6 carbon atoms, halomethyl, alkoxymethyl of 2-7 carbon atoms, alkanoyloxymethyl of 2-7 carbon atoms, alkoxy of 1-6 carbon atoms, alkylthio

of 1-6 carbon atoms, hydroxy, trifluoromethyl, cyano, nitro, carboxy, carboalkoxy of 2-7 carbon atoms, carboalkyl of 2-7 carbon atoms, phenoxy, phenyl, thiophenoxy, benzoyl, benzyl, amino, alkylamino of 1-6 carbon atoms, dialkylamino of 2 to 12 carbon atoms, phenylamino, benzylamino, alkanoylamino of 1-6 carbon atoms, alkenoylamino of 3-8 carbon atoms, alkynoylamino of 3-8 carbon atoms, and benzoylamino ; R3 is-OR; R is alkyl of 1 to 3 carbon atoms; n is 0-1; Y is-NH-,-O-,-S-, or-NRio- ; R10 is alkyl of 1-6 carbon atoms; R2 is in which each R8 is independently selected from hydrogen, alkyl of 1-6 carbon atoms, aminoalkyl of 1-6 carbon atoms, N-alkylaminoalkyl of 2-9 carbon atoms, N, N- dialkylaminoalkyl of 3-12 carbon atoms, N-cycloalkylaminoalkyl of 4-12 carbon atoms, N-cycloalkyl-N-alkylaminoalkyl of 5-18 carbon atoms, N, N- dicycloalkylaminoalkyl of 7-18 carbon atoms, morpholino-N-alkyl wherein the alkyl group is 1-6 carbon atoms, piperidino-N-alkyl wherein the alkyl group is 1-6 carbon atoms, N-alkyl-piperidino-N-alkyl wherein either alkyl group is 1-6 carbon atoms, azacycloalkyl-N-alkyl of 3-11 carbon atoms, hydroxyalkyl of 1-6 carbon atoms, alkoxyalkyl of 2-8 carbon atoms, carboxy, carboalkoxy of 1-6 carbon atoms, phenyl, carboalkyl of 2-7 carbon atoms, chloro, fluoro, and bromo; or a pharmaceutical acceptable salt thereof; which process comprises (a) preparing an N-acyl-2-amino-4-alkoxy-5-nitrobenzoic acid compound by the process provided therefor by the invention and (b) converting the N-acyl-2-amino-4-alkoxy-5-nitrobenzoic acid compound so prepared into a compound having formula I as defined and illustrated above or an acid addition salt thereof. X is preferably optionally substituted phenyl, particularly 3- chloro-4-fluorophenyl. The symbol n is preferably 0. Y is preferably-NH-. R3 and

RO-are preferably ethoxy. R2 is preferably R8-CH = CH-CO-NH- (in which R8 is as defined above), R2 being advantageously 4- (dimethylamino) but-2-enoyl-NH- The compound of formula I is preferably N- {4- [ (3-chloro-4-fluorophenyl) amino] -3-<BR> cyano-7-ethoxy-6-quinolinyl}-4- (dimethylamino)-2-butenamide.

The conversion of part (b) comprises using the acetylamino group at the 2- position and the carboxy group at the 1-position of the 2- (acetylamino)-4-alkoxy-5- nitrobenzoic acid as a precursor for a group of the formula li - N = CH-C (CN) = C [-Y- (CH2) n-X] - (II) (wherein X, Y and n are as defined above) and using the nitro group at the 5- position of the 2- (acetylamino)-4-alkoxy-5-nitrobenzoic acid as precusor for R2. The formation of the group of the formula 11 may be carried out by cleaving the acetyl group from the acetylamino group, preferably under basic or acidic conditions, for instance, by a basic solvolysis, more preferably by alkaline alcoholysis, e. g. with KOH/MeOH, and using the resultant amino group and the carboxy group as precursor for a group of the formula 11. The conversion of the amino group and carboxy group to the group of formula 11 may be carried out by known methods, for instance, by methods disclosed in US Patent 6,002, 008. The conversion of the nitro group into R2 may be carried out by reducing the nitro group to form an amino group and subjecting the amino group to amide formation by reaction with a carboxylic acid having the formula (Rg) 2-C = C R8-COOH (in which each R8 is as defined above) or a reactive derivative thereof, for instance the acid chloride having the formula (Rg) 2-C = C R8-COCI. The conversion of the nitro group into R2 may be carried out by methods known per se, for instance methods disclosed in US Patent 6,002, 008. The formation of the group of the formula 11 is preferably carried out before the conversion of the nitro group into R2. Thus part (b) preferably comprises (i) cleavage of the acyl group of the N-acyl-2-amino-4-alkoxy-5-nitrobenzoic acid compound so as to form a 2-amino-4-(C1-C3 alkoxy)-5-nitrobenzoic acid; (ii) converting the 2-amino-4- (Cl-C3 alkoxy)-5-nitrobenzoic acid into a nitro compound having formula I as illustrated above in which R, X, Y and n are as defined above and R2 is nitro;

(iii) reducing this nitro compound so as to form an amino compound having formula I as illustrated above in which R, X, Y and n are as defined above and R2 is amino; and (iv) subjecting this amino compound to amide formation by reaction with a carboxylic acid having the formula (Rg) 2-C = C Rg-COOH (in which each R8 is as defined above) or a reactive derivative thereof.

The pharmaceutical acceptable salts are those derived from such organic and inorganic acids as: acetic, lactic, citric, tartaric, succinic, maleic, malonic, gluconic, hydrochloric, hydrobromic, phosphoric, nitric, sulfuric, methanesulfonic, and similarly known as acceptable acids.

DETAILED DESCRIPTION OF THE INVENTION In accordance with this invention the production of N-acyl-2-amino-4-alkoxy-5- nitrobenzoic acids is provided in high yield and purity by a process which comprises: (a) oxidizing N- (5-alkoxy-2-methyl-4-nitrophenyl) acetamides with potassium permanganate in the presence of magnesium sulfate in aqueous sulfolan (5- 45% water) or aqueous pyridine at about 80 to 110 °C ; (b) acidifying the reaction mixture and collecting the product.

Preferred according to the process of the invention is a sulfolan : water volume ratio of about 19: 1 to 1: 1 v/v.

Preferred according to the process of the invention is a magnesium sulfate to potassium permanganate ratio of about 1: 4 equivalents of magnesium sulfate to about 3: 3.5 molar equivalents of potassium permanganate.

Preferred is acidifying the reaction mixture to a pH of about 2 to 6 and more preferably about 2 to 4.

Preferred is a reaction temperature of about 80-90°C.

Surprisingly, the use of sulfolan as a co-solvent in the oxidation of N- (5- alkoxy-2-methyl-4-nitrophenyl) acetamides allowed the reaction concentration to be more than doubled (20: 1), minimized the amount of oxidant (3 to 3.5 molar equivalents) vs. 4 to 5 previously used under totally aqueous conditions and dramatically increasing the yield from 30 to 50% to at least 68 to 71 % and further reducing the amount of inorganic waste. The use of sulfolan simplifies the isolation process by avoiding extraction procedures. A further advantage is that the process is very reproducible. A preferred procedure is to add solid potassium permanganate to a hot solution of N- (5-alkoxy-2-methyl-4-nitrophenyl) acetamides in the presence of magnesium sulfate in aqueous sulfolan at 80 to 90 °C. An additional advantage of this procedure is that the oxidation may optionally be performed by adding the N- (5- alkoxy-2-methyl-4-nitrophenyl) acetamides as a sulfolan solution to the oxidizing mixture of potassium permanganate in water. The isolation of the product is accomplished by filtering the reaction mixture to remove inorganics, followed by diluting the filtrate with water and acidifying the reaction mixture to about pH 2 to 4.

The product precipitates and is collected by filtration. Similar results are obtained using aqueous pyridine as the solvent. Preferred cosolvens are sulfolan and pyridine.

In order to facilitate a further understanding of the invention, the following non-limiting examples illustrate the process of the present invention.

Example 1 2-acetylamino-4-ethoxy-5-nitrobenzoic acid A 5-L Morton flask equipped with an overhead stirrer and thermocouple is charged with N- (5-ethoxy-2-methyl-4-nitro-phenyl)-acetamide (46 g, 193 mmol), aq. sulfolan (95: 5 v/v, 500 mL) and water (200 mL). The reaction mixture is heated to 90 °C and then magnesium sulfate (MgSO) 4 (46g, 382 mmol) and water (200 mL) are added to the reaction mixture. The potassium permanganate (KMn04) (105 g, 670 mmol) is added in 15-g portions every 15 minutes until the reaction is complete by HPLC [>95%]. Retention time Tr of N- (5-ethoxy-2-methyl-4-nitro-phenyl)-acetamide is 10.7 min and Tr of 2-acetylamino-4-ethoxy-5-nitro-benzoic acid is 12.4 min in a 65: 35 mixture of CH3CN with 0.1 % trifluoroacetic acid (TFA): H20 run isocratically at 1.0

mU min with a Phenomenex Prodigy 5 ODS column (250 X 4.6 mm). The hot solution (>80 °C) is filtered thru diatomaceous earth (6"diameter and 1"thick) and the filter cake (MnO2) is rinsed with hot water (>80 °C, 3 X 200 mL). While stirring the filtrate, 10% HCI is added until the pH is adjusted to about 2 to 4 and stirring of the suspension continued while cooling to ambient temperature (15 to 25 °C). The suspension is filtered with a fritted funnel (medium) and the filter cake is washed with water (3 X 200 mL). The cake is dried to constant weight under vacuum (50 mm Hg) at 40 to 50 °C. This procedure provides product of high purity in good yield (36.5g, 70% yield, >98% purity by NMR integration).'H NMR (300 MHz, DMSO-d6) 11.5 (br s, 1 H), 8.52 (s, 1 H), 8.50 (s, 1 H), 4.22 (q, j=7 Hz, 2H), 2.21 (s, 3H), 1.40 (t, j-7 Hz, 3H) Example 2 2-acetvlamino-4-ethoxv-5-nitrobenzoic acid A 500 mL Morton flask equipped with an overhead stirrer and thermocouple is charged with N- (5-ethoxy-2-methyl-4-nitro-phenyl)-acetamide (3 g, 12.5 mmol) and aq. sulfolan (95: 5 v/v, 35 mL). While stirring is added MgS04 (5 g, 41.5 mmol) and water (15 mL). The reaction mixture is heated to 90-95 °C and 125 mL (31.2 mmol, 2.4 eq) of a 0.25M aqueous solution of KMn04 is added at a rate to control exothermic foaming. The reaction is complete in about 15 to 20 minutes by HPLC [>95%]. Retention time Tr of N- (5-ethoxy-2-methyl-4-nitro-phenyl)-acetamide is 10.7 min and Tr of 2-acetylamino-4-ethoxy-5-nitro-benzoic acid is 12.4 min in a 65: 35 mixture of CH3CN with 0.1 % TFA: H20 run isocratically at 1.0 mL/min with a Phenomenex Prodigy 5 ODS column (250 X 4.6 mm). However, should the reaction be incomplete, as shown by HPLC system above, additional portions of the KMn04 (25 mL, 6.25 mmol) are added at 15-20 minute intervals and completion monitored by HPLC as above. The hot solution (>80 °C) is filtered through diatomaceous earth (6"diameter and 1"thick) and the filter cake (Mn02) is rinsed with hot water (>80 °C, 3 X 200 mL). While stirring the filtrate, 10% HCI is added until the pH is adjusted to about 2 to 4 and stirring of the suspension continued while cooling to ambient temperature (15 to 25 °C). The suspension is filtered with a fritted funnel (medium) and the filter cake is washed with water (3 X 200 mL). The cake is dried to constant weight under vacuum (50 mm Hg) at 40 to 50 °C. This procedure provides product of high purity in good yield ; 2.4 g, 71%, purity >98% by NMR integration or by HPLC.

Example 3 2-acetvlamino-4-ethoxy-5-nitrobenzoic acid In a 5-L multi-neck flask, equipped with mechanical stirrer, thermometer and condenser is charged with water (1500 mL) followed by MgS04 (67 g). To the resulting solution is added pyridine (500 mL) and then N- (5-ethoxy-2-methyl-4-nitro- phenyl)-acetamide (50 g) over 5 min. The suspension is heated to 85 °C and the resulting solution is charged with KMn04 (150. 0 g) over 20 min until the reaction is complete by HPLC [> 95%]. Retention time Tr of N- (5-ethoxy-2-methyl-4-nitro- phenyl)-acetamide is 7.5 min and Tr of 2-acetylamino-4-ethoxy-5-nitrobenzoic acid is 8.5 min) in a 40: 60 mixture of CH3CN with 0. 1% H3PO4 : H20 run isocratically at 1.0 mL/min with a Phenomenex Luna C8 column (150 x 4.6 mm). Upon completion, the hot mixture (80 to 85 °C) is filtered on a Buchner (20 cm diameter). The filter cake (MnO2) is washed with hot water (850 mL). The filtrates are combined, cooled to 30 °C and treated with cone. HCI (125 mL) to pH = 6. The resulting suspension is stirred at 30 °C for 30 min and the product is collected on a Buchner funnel (20 cm diameter). The cake is suspended in water (500 mL) and treated with conc. HCI (11 mL) to pH = 1.5. The product is collected on a Buchner funnel (16 cm diameter) and washed with water (100 mL) followed by acetone (50 mL). The cake is dried to constant weight under vacuum (10 mm Hg) at 65 °C. This procedure provides product of high purity in good yield (38. 5 g, 68.4%, 98.7% purity by HPLC).'H NMR (400 MHz, DMSO-d6) : 11.5 (br s, 1 H), 8.52 (s, 1 H), 8. 50 (s, 1 H), 4.22 (q, j=7 Hz, 2H), 2.21 (s, 3H), 1.40 (t, j-7 Hz, 3H)