Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
RADIATION-EMITTING COMPONENT AND METHOD FOR PRODUCING SAME
Document Type and Number:
WIPO Patent Application WO/2021/018964
Kind Code:
A1
Abstract:
The invention relates to a housing (1) for a radiation-emitting component, having the following features: - at least one electric contact point (8) which is arranged on a first main surface (6) of the housing (1) and - at least one depression (7) in the first main surface (6) of the housing (5), said depression being arranged adjacently to the electric contact point (8). The invention additionally relates to a method for producing a radiation-emitting component and to a radiation-emitting component.

Inventors:
ARNDT KARLHEINZ (DE)
GEBUHR TOBIAS (DE)
JEREBIC SIMON (DE)
Application Number:
PCT/EP2020/071399
Publication Date:
February 04, 2021
Filing Date:
July 29, 2020
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
OSRAM OPTO SEMICONDUCTORS GMBH (DE)
International Classes:
H01L33/62; H01L33/46; H01L33/60
Domestic Patent References:
WO2019054793A12019-03-21
Foreign References:
JP2006135276A2006-05-25
US20080054287A12008-03-06
US20170054061A12017-02-23
EP2187457A22010-05-19
Attorney, Agent or Firm:
KANZIAN, Tanja (DE)
Download PDF:
Claims:
Patentansprüche

1. Gehäuse (1) für ein strahlungsemittierendes Bauelement mit :

- zumindest einer elektrischen Kontaktstelle (8), die an einer ersten Hauptfläche (6) des Gehäuses (1) angeordnet ist, und

- zumindest einer Vertiefung (7) in der ersten Hauptfläche (6) des Gehäuses (5), die neben der elektrischen

Kontaktstelle (8) angeordnet ist.

2. Gehäuse nach dem vorherigen Anspruch,

bei dem die erste Hauptfläche (6) von Seitenwänden (4) rahmenartig umlaufen ist, so dass eine Kavität (5)

ausgebildet ist, wobei die erste Hauptfläche (6) des Gehäuses (1) eine Bodenfläche der Kavität umfasst oder ausbildet.

3. Gehäuse (1) nach einem der obigen Ansprüche, umfassend:

- zwei elektrische Kontaktstellen (8), die direkt

nebeneinander an der ersten Hauptfläche (6) des Gehäuses (5) angeordnet sind, und

- zwei Vertiefungen (7) an der ersten Hauptfläche (6) des Gehäuses (5), wobei

- neben jeder elektrischen Kontaktstelle eine der

Vertiefungen angeordnet ist.

4. Gehäuse (1) nach einem der obigen Ansprüche,

bei dem eine Bodenfläche (29) der Vertiefung (7) vertikal beabstandet zu einer Kontaktfläche (9) der elektrischen

Kontaktstelle angeordnet ist.

5. Gehäuse (1) nach einem der Ansprüche 3 bis 4, mit: - einem H-förmigen Abstandshalter (10) umfassend zwei

Längsstege (11), zwischen denen ein Quersteg (12) angeordnet ist, wobei

- der Quersteg (12) zwischen den beiden elektrischen

Kontaktstellen (8) verläuft.

6. Gehäuse (1) nach dem vorherigen Anspruch, bei dem

- die erste Hauptfläche (6) von Seitenwänden (4) rahmenartig umlaufen ist, so dass eine Kavität (5) ausgebildet ist, wobei die erste Hauptfläche (6) des Gehäuses (1) eine Bodenfläche der Kavität ausbildet oder umfasst, und

- die Längsstege (11) entlang gegenüberliegenden Seitenwänden (4) verlaufen.

7. Gehäuse (1) nach einem der Ansprüche 5 bis 6,

bei dem ein Spalt (14) zwischen dem Quersteg (12) und dem Längssteg (11) ausgebildet ist.

8. Gehäuse (1) nach einem der obigen Ansprüche,

das einen Gehäusekörper (2) und einen Leiterrahmen (3) umfasst, der in den Gehäusekörper (2) eingebettet ist, wobei eine Kontaktfläche (9) der elektrischen Kontaktstelle (9) an der ersten Hauptfläche (6) des Gehäuses (5) freiliegt.

9. Gehäuse (1) nach dem vorherigen Anspruch,

bei dem zumindest eine der Vertiefungen (7) in dem

Gehäusekörper (2) ausgebildet ist.

10. Gehäuse (1) nach Anspruch 8 oder 9,

bei dem zumindest eine der Vertiefungen (7) in dem

Leiterrahmen (3) ausgebildet ist.

11. Gehäuse (1) nach einem der Ansprüche 8 bis 10, bei dem die elektrische Kontaktstelle (8) durch einen

Gelenksteg (16) mit dem restlichen Leiterrahmen (3) verbunden ist, wobei der Gelenksteg (16) eine geringere Dicke aufweist als die elektrische Kontaktstelle (8) .

12. Gehäuse (1) nach einem der Ansprüche 8 bis 11,

bei dem die Kontaktflächen (9) der elektrischen Kontaktstelle (8) durch den Gehäusekörper (2) begrenzt sind.

13. Verfahren zur Herstellung eines strahlungsemittierenden Bauelements mit den folgenden Schritten:

- Bereitstellen eines Gehäuses (1) nach einem der obigen Ansprüche,

- Befestigen eines strahlungsemittierenden Halbleiterchips (17) auf der elektrischen Kontaktstelle (8), wobei eine rückseitige Hauptfläche des strahlungsemittierenden

Halbleiterchips (17) über die Vertiefung (7) ragt,

- Einbringen einer flüssigen reflektierenden Vergussmasse (26) in die Vertiefung (7), so dass die flüssige

reflektierende Vergussmasse (26) von der Vertiefung (7) unter den Halbleiterchip (17) fließt.

14. Verfahren nach dem vorherigen Anspruch,

bei dem die flüssige reflektierende Vergussmasse (26)

aufgrund von Kapillarkräften ausgehend von der Vertiefung (7) unter den Halbleiterchip (17) fließt.

15. Strahlungsemittierendes Bauelement mit:

- einem Gehäuse (1) umfassend zumindest eine elektrische Kontaktstelle (8), die an einer ersten Hauptfläche (6) des Gehäuses (5) angeordnet ist und zumindest einer Vertiefung (7) in der ersten Hauptfläche (6) des Gehäuses (5), die neben der elektrischen Kontaktstelle (8) angeordnet ist, - einem strahlungsemittierenden Halbleiterchip (17) mit einem elektrischen Kontakt (21), der auf die elektrische

Kontaktstelle (8) aufgebracht ist, und

- einem reflektierenden Verguss (27), der unter dem

strahlungsemittierenden Halbleiterchip (17) und in der

Vertiefung (7) angeordnet ist, wobei

- eine rückseitige Hauptfläche (30) des

strahlungsemittierenden Halbleiterchips (17) über die

Vertiefung (7) ragt.

16. Strahlungsemittierendes Bauelement nach dem vorherigen Anspruch,

bei dem der reflektierende Verguss (27) bis zu der

rückseitigen Hauptfläche (30) des strahlungsemittierenden Halbleiterchips (17) reicht.

17. Strahlungsemittierendes Bauelement nach einem der

Ansprüche 15 oder 16, bei dem

- das Gehäuse (1) einen H-förmigen Abstandshalter (10) mit zwei Längsstegen (11), zwischen denen ein Quersteg (12) angeordnet ist, umfasst, wobei der Quersteg (12) zwischen den beiden elektrischen Kontaktstellen (8) verläuft, und

- der strahlungsemittierende Halbleiterchip (17) mit der rückseitigen Hauptfläche (30) auf zumindest einem Längssteg und/oder dem Quersteg (12) aufliegt.

Description:
STRAHLUNGSEMITTIERENDES BAUELEMENT UND DESSEN HERSTELLUNGSVERFAHREN

Es werden ein Gehäuse für ein strahlungsemittierendes

Bauelement, ein Verfahren zur Herstellung eines

strahlungsemittierenden Bauelements und ein

strahlungsemittierendes Bauelement angegeben.

Es soll ein Gehäuse für ein strahlungsemittierendes

Bauelement bereitgestellt werden, das eine erhöhte Effizienz ermöglicht. Außerdem sollen ein vereinfachtes Verfahren zur Herstellung eines strahlungsemittierenden Bauelements mit erhöhter Effizienz und ein strahlungsemittierendes Bauelement mit erhöhter Effizienz angegeben werden.

Diese Aufgaben werden insbesondere durch ein Gehäuse mit den Merkmalen des Patentanspruchs 1, durch ein Verfahren mit den Schritten des Patentanspruchs 13 und durch ein

strahlungsemittierendes Bauelement mit den Merkmalen des Patentanspruchs 15 gelöst. Vorteilhafte Ausführungsformen und Weiterbildungen des

Gehäuses, des Verfahrens und des strahlungsemittierenden Bauelements sind Gegenstände der jeweils abhängigen

Ansprüche .

Gemäß einer weiteren Ausführungsform umfasst das Gehäuse zumindest eine elektrische Kontaktstelle, die an einer ersten Hauptfläche des Gehäuses angeordnet ist. Die elektrische Kontaktstelle ist dazu eingerichtet, mit dem elektrischen Kontakt eines Halbleiterchips, zum Beispiel eines strahlungsemittierenden Halbleiterchips, elektrisch leitend verbunden zu werden. Bevorzugt ist die elektrische

Kontaktstelle des Gehäuses dazu eingerichtet, durch Löten mit dem elektrischen Kontakt des Halbleiterchips mechanisch stabil und elektrisch leitend verbunden zu werden.

Insbesondere ist eine Kontaktfläche der elektrischen

Kontaktstelle bevorzugt lötfähig ausgebildet.

Gemäß einer weiteren Ausführungsform umfasst das Gehäuse zumindest eine Vertiefung in der ersten Hauptfläche, die neben der elektrischen Kontaktstelle angeordnet ist.

Bevorzugt ist die Vertiefung als Wanne ausgebildet, die eine Bodenfläche aufweist, die stellenweise oder über die gesamte Bodenfläche parallel zu einer Montagefläche des Gehäuses verläuft .

Gemäß einer Ausführungsform des Gehäuses ist die erste

Hauptfläche von Seitenwänden rahmenartig umlaufen, so dass eine Kavität ausgebildet ist, wobei die erste Hauptfläche des Gehäuses eine Bodenfläche der Kavität ausbildet oder umfasst. Bevorzugt sind die Seitenwände zusammenhängend ausgebildet und bilden einen geschlossenen Rahmen, zum Beispiel mit einer rechteckigen Form, aus. Bevorzugt ist die elektrische

Kontaktstelle angrenzend an eine der Seitenwände angeordnet. Bilden die Seitenwände eine rechteckige Form aus, so umfasst das Gehäuse in der Regel vier Seitenwände. Jeweils zwei

Seitenwände liegen sich hierbei gegenüber.

Bevorzugt sind Innenflächen der Seitenwände schräg zu der Bodenfläche der Kavität angeordnet. Auf diese Art und Weise wirken die Innenflächen der Seitenwände als Reflektor für elektromagnetische Strahlung eines strahlungsemittierenden Halbleiterchips, der in der Kavität angeordnet ist.

Gemäß einer weiteren Ausführungsform umfasst das Gehäuse zwei elektrische Kontaktstellen, die direkt nebeneinander an der ersten Hauptfläche des Gehäuses angeordnet sind. Mit dem Begriff „direkt nebeneinander" ist insbesondere gemeint, dass zwischen den beiden elektrischen Kontaktstellen keine

Vertiefung angeordnet ist. Jedoch sind die beiden

elektrischen Kontaktstellen in der Regel beabstandet

zueinander angeordnet. Beispielsweise sind die beiden

elektrischen Kontaktstellen durch einen Quersteg eines H- förmigen Abstandshalters, der weiter unten im Detail

beschrieben wird, voneinander getrennt.

Es ist möglich, dass das Gehäuse eine beliebige Anzahl an elektrischen Kontaktstellen, also zum Beispiel zwei oder mehr

Kontaktstellen, aufweist. Vorliegend sind Merkmale und

Ausführungsformen der Einfachheit halber häufig nur für eine elektrische Kontaktstelle beschrieben. Derartige

Ausführungsformen und Merkmale können bei allen elektrischen

Kontaktstellen des Gehäuses ausgebildet sein.

Umfasst das Gehäuse zwei elektrische Kontaktstellen, die direkt nebeneinander an ersten Hauptfläche des Gehäuses angeordnet sind, so umfasst das Gehäuse bevorzugt weiterhin zwei Vertiefungen an der ersten Hauptfläche des Gehäuses. Hierbei ist bevorzugt jeweils eine Vertiefung neben einer elektrischen Kontaktstelle angeordnet. Insbesondere sind die zwei elektrischen Kontaktstellen bevorzugt mittig an der ersten Hauptfläche des Gehäuses angeordnet. Umfasst das

Gehäuse eine Kavität, die von Seitenwänden rahmenartig umlaufen wird, wobei die erste Hauptfläche die Bodenfläche der Kavität ausbildet, so grenzt jede Vertiefung bevorzugt an eine Seitenwand an, die sich bevorzugt gegenüberliegen.

Es ist möglich, dass das Gehäuse eine beliebige Anzahl an Vertiefungen, also zum Beispiel zwei oder mehr Vertiefungen, aufweist. Vorliegend sind Merkmale und Ausführungsformen der Einfachheit halber häufig nur für eine Vertiefung

beschrieben. Derartige Ausführungsformen und Merkmale können bei allen Vertiefungen des Gehäuses ausgebildet sein.

Gemäß einer weiteren Ausführungsform weist das Gehäuse eine Haupterstreckungsrichtung auf. Die Vertiefungen grenzen bevorzugt an zwei gegenüberliegenden Seitenwänden an, die jeweils quer zur Haupterstreckungsrichtung des Gehäuses verlaufen .

Gemäß einer weiteren Ausführungsform des Gehäuses ist eine Bodenfläche der Vertiefung vertikal beabstandet zu einer Kontaktfläche der elektrischen Kontaktstelle angeordnet. Mit dem Begriff „vertikal beabstandet" ist insbesondere gemeint, dass die Bodenfläche der Vertiefung in einer vertikalen

Richtung einen Abstand zu der Kontaktfläche der elektrischen Kontaktstelle aufweist. Die vertikale Richtung steht hierbei senkrecht auf der Montagefläche des Gehäuses.

Beispielsweise beträgt der Abstand zwischen der Bodenfläche der Vertiefung und der Kontaktfläche der elektrischen

Kontaktstelle einen Wert zwischen einschließlich 20

Mikrometer und einschließlich 200 Mikrometer, insbesondere ungefähr 50 Mikrometer.

Gemäß einer weiteren Ausführungsform umfasst das Gehäuse einen H-förmigen Abstandshalter mit zwei Längsstegen, zwischen denen ein Quersteg angeordnet ist. Mit anderen

Worten formen die Längsstege und der Quersteg die Form des Buchstaben H aus. Der Quersteg verläuft bevorzugt zwischen den beiden elektrischen Kontaktstellen. Umfasst das Gehäuse eine Kavität, die von Seitenwänden rahmenartig umlaufen wird, wobei die erste Hauptfläche die Bodenfläche der Kavität ausbildet, so verlaufen die Längsstege besonders bevorzugt entlang gegenüberliegenden Seitenwänden des Gehäuses.

Gemäß einer weiteren Ausführungsform des Gehäuses ist ein Spalt zwischen dem Quersteg und dem Längssteg des H-förmigen Abstandshalters ausgebildet. Besonders bevorzugt sind der Quersteg und der Längssteg hierbei durch den Spalt

vollständig voneinander getrennt.

Gemäß einer weiteren Ausführungsform umfasst das Gehäuse einen Gehäusekörper und einen Leiterrahmen. Der Leiterrahmen ist bevorzugt in den Gehäusekörper eingebettet, wobei

zumindest die Kontaktfläche der elektrischen Kontaktstelle an der ersten Hauptfläche des Gehäuses frei liegt.

Beispielsweise ist der Gehäusekörper durch Formen aus einem Gehäusematerial, wie einer Epoxid-Formmasse (EMC kurz für englisch: "Epoxy Mold Compound"), gebildet.

Der Leiterrahmen umfasst bevorzugt ein Metall oder ist aus einem Metall gebildet. Beispielsweise umfasst der

Leiterrahmen Kupfer oder ist aus Kupfer gebildet. Besonders bevorzugt umfasst der Leiterrahmen einen Kern, der aus Kupfer gebildet und mit einer Beschichtung versehen ist. Die

Beschichtung weist bevorzugt Silber auf oder ist aus Silber gebildet . Gemäß einer weiteren Ausführungsform des Gehäuses ist die Vertiefung in dem Gehäusekörper ausgebildet. Weiterhin ist es auch möglich, dass die Vertiefung in dem Leiterrahmen

ausgebildet ist.

Gemäß einer weiteren Ausführungsform des Gehäuses ist die elektrische Kontaktstelle Teil des Leiterrahmens. Besonders bevorzugt ist die elektrische Kontaktstelle durch einen

Gelenksteg mit dem restlichen Leiterrahmen verbunden, wobei der Gelenksteg eine geringere Dicke aufweist, als die

elektrische Kontaktstelle. Beispielsweise weist der

Gelenksteg eine Dicke auf, die zwischen einschließlich dem 0,3-Fachen der Dicke der elektrischen Kontaktstelle und einschließlich dem 0,7-Fachen der Dicke der elektrischen Kontaktstelle liegt. Der Gelenksteg weist den Vorteil auf, dass der strahlungsemittierende Halbleiterchip, der auf der elektrischen Kontaktstelle befestigt ist, thermomechanisch entlastet wird. Insbesondere bei zyklischen thermischen

Belastungen des fertigen strahlungsemittierenden Bauelements ist der äußere Teil des Leiterahmens durch die Gelenkstege mit Vorteil von den elektrischen Kontaktstellen mechanisch weitgehend entkoppelt, so dass nur wenig mechanische Spannung an den strahlungsemittierenden Halbleiterchip auf den

elektrischen Kontaktstellen übertragen wird.

Bevorzugt ist die Kontaktfläche der elektrischen

Kontaktstelle durch den Gehäusekörper begrenzt, besonders bevorzugt umlaufend. Beispielsweise schließt eine Oberfläche des Gehäusekörpers mit den Kontaktflächen bündig ab. Der Gehäusekörper umschließt hierbei die Kontaktflächen

beispielsweise in lateraler Richtung. Die laterale Richtung steht auf der vertikalen Richtung senkrecht. Die Kontaktfläche der elektrischen Kontaktstelle ist

besonders bevorzugt dazu vorgesehen, mittels eines Lots mit dem elektrischen Kontakt eines strahlungsemittierenden

Halbleiterchips mechanisch stabil und elektrisch leitend verbunden zu werden. Ist die Kontaktfläche der elektrischen Kontaktstelle durch den Gehäusekörper begrenzt, so verbleibt geschmolzenes Lot während des Lötprozesses besonders

bevorzugt auf den Kontaktflächen aufgrund der

unterschiedlichen Benetzungseigenschaften des Gehäusekörpers und der Kontaktfläche . Dies führt mit Vorteil zu einem robusten Lötprozess.

Gemäß einer weiteren Ausführungsform des Gehäuses weist der Leiterrahmen eine externe elektrische Anschlussstelle auf, die an der Montagefläche des Gehäuses frei liegt und eine Einbuchtung aufweist, die an einer Kante des Gehäuses angeordnet ist. Die Kante begrenzt hierbei die Montagefläche des Gehäuses. Die Einbuchtung an der Kante des Gehäuses ermöglicht es, mit Vorteil den Lötprozess zur Befestigung der externen elektrischen Anschlussstelle auf einem weiteren Element, wie beispielsweise einem Anschlussträger, zu

kontrollieren .

Das hier beschriebene Gehäuse ist dazu geeignet, bei einem Verfahren zur Herstellung eines strahlungsemittierenden

Bauelements verwendet zu werden. Merkmale und

Ausführungsformen, die vorliegend lediglich in Verbindung mit dem Gehäuse beschrieben sind, können auch bei dem Verfahren ausgebildet sein und umgekehrt.

Gemäß einer Ausführungsform des Verfahrens zur Herstellung eines strahlungsemittierenden Bauelements wird ein Gehäuse bereitgestellt, wie bereits beschrieben. Gemäß einer weiteren Ausführungsform des Verfahrens wird ein strahlungsemittierender Halbleiterchip auf der elektrischen Kontaktstelle befestigt. Der strahlungsemittierende

Halbleiterchip sendet im Betrieb elektromagnetische Strahlung eines ersten Wellenlängenbereichs von einer

Strahlungsaustrittsfläche aus. Beispielsweise handelt es sich bei dem strahlungsemittierenden Halbleiterchip um einen

Leuchtdiodenchip .

Gemäß einer weiteren Ausführungsform des Verfahrens wird eine flüssige reflektierende Vergussmasse in die Vertiefung eingebracht, sodass die flüssige reflektierende Vergussmasse von der Vertiefung unter den strahlungsemittierenden

Halbleiterchip fließt. Bevorzugt ist die flüssige

reflektierende Vergussmasse diffus reflektierend ausgebildet. Mit dem Begriff „diffus reflektierend" ist insbesondere im Unterschied zu einem spekular reflektierenden Element

gemeint, dass das diffus reflektierende Element einfallende elektromagnetische Strahlung in viele verschiedene

Raumrichtungen reflektiert und nicht nur in einige wenige.

Beispielsweise umfasst die flüssige diffus reflektierende Vergussmasse ein Harz, wie etwa ein Silikon, in das diffus reflektierende Partikel eingebracht sind. Bei den diffus reflektierenden Partikeln handelt es sich beispielsweise um Titandioxidpartikel. Besonders bevorzugt erscheint die flüssige diffus reflektierende Vergussmasse weiß.

Gemäß einer bevorzugten Ausführungsform des Verfahrens ragt eine rückseitige Hauptfläche des strahlungsemittierenden Halbleiterchips über die Vertiefungen. Auf diese Art und Weise kann die flüssige reflektierende Vergussmasse besonders gut unter den Halbleiterchip fließen. Während die flüssige reflektierende Vergussmasse unter den strahlungsemittierenden Halbleiterchip fließt, sinkt ein Niveau der flüssigen

reflektierenden Vergussmasse in der Vertiefung in der Regel, so dass ein Benetzungswinkel der flüssigen reflektierenden Vergussmasse an Seitenflächen des strahlungsemittierenden Halbleiterchips abnimmt. Mit abnehmendem Benetzungswinkel nimmt auch das Bestreben der flüssigen reflektierenden

Vergussmasse ab, die Seitenflächen des

strahlungsemittierenden Halbleiterchips zu benetzen.

Gemäß einer besonders bevorzugten Ausführungsform des

Verfahrens fließt die flüssige reflektierende Vergussmasse aufgrund von Kapillarkräften ausgehend von der Vertiefung unter den strahlungsemittierenden Halbleiterchip. Die

flüssige reflektierende Vergussmasse füllt die Vertiefung nach dem Einbringen bevorzugt zunächst vollständig aus.

Beispielweise wird die flüssige reflektierende Vergussmasse in die Vertiefung durch Dispensen eingebracht. Hierbei bildet sich beispielsweise ein Tropfen innerhalb der Vertiefung aus.

Die flüssige reflektierende Vergussmasse in der einen

Vertiefung dient bevorzugt als Reservoir für den

Befüllungsvorgang der ersten Hauptfläche des Gehäuses.

Ausgehend von der Vertiefung an der ersten Hauptfläche benetzt die flüssige reflektierende Vergussmasse den Bereich unterhalb des strahlungsemittierenden Halbleiterchips, umfließt die elektrischen Kontakte und breitet sich weiter bis zur gegenüberliegenden Vertiefung aus. Umfasst das

Gehäuse eine Kavität, die von Seitenwänden rahmenartig umlaufen wird, wobei die erste Hauptfläche die Bodenfläche der Kavität ausbildet, so werden auch die Innenflächen der Seitenwände der Kavität in der Regel bis zu einer gewissen Höhe von der flüssigen reflektierenden Vergussmasse benetzt.

Besonders bevorzugt wird der strahlungsemittierende

Halbleiterchip auf der elektrischen Kontaktstelle befestigt bevor die flüssige reflektierende Vergussmasse in die

Vertiefung des Gehäuses eingebracht wird.

Gemäß einer Aus führungs form des Verfahrens weist das Gehäuse zwei elektrische Kontaktstellen auf, die direkt nebeneinander an der ersten Hauptfläche des Gehäuses angeordnet sind. Das Gehäuse weist hierbei außerdem bevorzugt zwei Vertiefungen in der ersten Hauptfläche auf, wobei jeweils eine Vertiefung neben einer elektrischen Kontaktstelle angeordnet ist.

Umfasst das Gehäuse eine Kavität, die von Seitenwänden rahmenartig umlaufen wird, wobei die erste Hauptfläche die Bodenfläche der Kavität ausbildet, grenzt jede Vertiefung bevorzugt an jeweils eine Seitenwand an.

Der strahlungsemittierende Halbleiterchip ist bei dieser Aus führungs form des Verfahrens besonders bevorzugt als Flip- Chip ausgebildet. Ein Flip-Chip weist in der Regel einen Träger mit einer ersten Hauptfläche auf, auf die eine

Halbleiterschichtenfolge mit einer strahlungserzeugenden aktiven Zone epitaktisch gewachsen oder übertragen ist. Die Halbleiterschichtenfolge basiert beispielsweise auf einem Arsenid- oder einem Phosphidverbindungshalbleitermaterial . Arsenidverbindungshalbleitermaterialien sind

Verbindungshalbleitermaterialien, die Arsen enthalten, wie die Materialien aus dem System In x Al y Gai- x-y As mit 0 < x < 1, 0 < y < 1 und x+y < 1, während

Phosphidverbindungshalbleitermaterialien

Verbindungshalbleitermaterialien sind, die Phosphor enthalten, wie die Materialien aus dem System In x Al y Gai- x-y P mit 0 < x < 1, 0 < y < 1 und x+y < 1.

Bevorzugt basiert die Halbleiterschichtenfolge auf einem Nitridverbindungshalbleitermaterial .

Nitridverbindungshalbleitermaterialien sind

Verbindungshalbleitermaterialien, die Stickstoff enthalten, wie die Materialien aus dem System In x Al y Gai- x-y N mit 0 < x <

1, 0 < y < 1 und x+y < 1.

Der Träger ist in der Regel durchlässig zumindest für die in der aktiven Zone erzeugte elektromagnetische Strahlung.

Beispielsweise weist der Träger eines der folgenden

Materialien auf oder ist aus einem der folgenden Materialien gebildet: Saphir, Siliziumcarbid. Der Träger weist eine zweite Hauptfläche auf, die der ersten Hauptfläche

gegenüberliegt. Die zweite Hauptfläche des Trägers bildet in der Regel teilweise die Strahlungsaustrittsfläche des

Halbleiterchips aus. Weiterhin bilden auch die Seitenflächen des Trägers in der Regel einen Teil der

Strahlungsaustrittsfläche des Flip-Chips aus. An der rückseitigen Hauptfläche des Flip-Chips sind in der Regel zwei elektrische Kontakte angeordnet, die zur elektrischen Kontaktierung des Flip-Chips vorgesehen sind. Besonders bevorzugt ist die rückseitige Hauptfläche des Flip-Chips verspiegelt .

Der Flip-Chip wird bevorzugt mit seinen zwei elektrischen Kontakten auf den elektrischen Kontaktstellen des Gehäuses befestigt, beispielsweise durch Löten.

Wird ein Gehäuse mit zwei elektrischen Kontaktstellen und zwei Vertiefungen in Kombination mit einem Flip-Chip verwendet, so zeichnet sich diese Ausführungsform des

Verfahrens insbesondere dadurch aus, dass die flüssige reflektierende Vergussmasse ausgehend von der Vertiefung, in die diese eingebracht wird, unter den Flip-Chip zu der gegenüberliegenden Vertiefung fließt. Seitenflächen des Flip- Chips bleiben hierbei in der Regel frei von der flüssigen reflektierenden Vergussmasse, so dass die Effizienz des fertigen strahlungsemittierenden Bauelements nicht aufgrund von Rückreflexionen vermindert ist.

Die Vertiefungen an der ersten Hauptfläche des Gehäuses ermöglichen es, mit Vorteil die gesamte Kavität bis zu einer gewissen Füllhöhe auf einfache Art und Weise mit der

flüssigen reflektierenden Vergussmasse zu füllen. Weiterhin bildet sich insbesondere in dem Bereich der Vertiefungen eine vergleichsweise dicke Schicht an flüssiger reflektierender Vergussmasse, die die Effizienz des fertigen

strahlungsemittierenden Bauelements mit Vorteil erhöht.

Gemäß einer bevorzugten Ausführungsform des Verfahrens weist der Quersteg des H-förmigen Abstandshalters abgerundete Ecken auf. Auf diese Art und Weise kann die flüssige reflektierende Vergussmasse besser unter den Halbleiterchip fließen.

Besonders bevorzugt sind Kanten der Vertiefung abgerundet ausgeführt. Auch dies erleichtert es der flüssigen

reflektierenden Vergussmasse, unter den Halbleiterchip zu fließen .

Gemäß einer besonders bevorzugten Ausführungsform wird die flüssige reflektierende Vergussmasse zu einem festen Verguss ausgehärtet. Handelt es sich bei der flüssigen

reflektierenden Vergussmasse um eine flüssige diffus reflektierende Vergussmasse, so handelt es sich auch bei dem festen Verguss um einen diffus reflektierenden Verguss. Bei diesem Verfahrensschritt kann es sich um den letzten

Verfahrensschritt handeln.

Mit dem beschriebenen Verfahren kann ein

strahlungsemittierendes Bauelement hergestellt werden. Die im Zusammenhang mit dem Verfahren beschriebenen

Ausführungsformen und Merkmale können auch bei dem

strahlungsemittierenden Bauelement ausgebildet sein und umgekehrt .

Gemäß einer Ausführungsform umfasst das Gehäuse zumindest eine elektrische Kontaktstelle, die an einer ersten

Hauptfläche des Gehäuses angeordnet ist, und zumindest eine Vertiefung in der ersten Hauptfläche des Gehäuses. Die

Vertiefung ist hierbei neben der elektrischen Kontaktstelle angeordnet .

Gemäß einer weiteren Ausführungsform umfasst das

strahlungsemittierende Bauelement einen

strahlungsemittierenden Halbleiterchip mit einem elektrischen Kontakt, der auf die elektrische Kontaktstelle des Gehäuses aufgebracht ist. Bevorzugt ist der elektrische Kontakt mittels eines Lots elektrisch leitend und mechanisch stabil auf dem elektrischen Kontakt befestigt. Bevorzugt handelt es sich bei dem strahlungsemittierenden Halbleiterchip um einen Flip-Chip .

Die elektrische Kontaktstelle des Gehäuses befindet sich bevorzugt in der Mitte der ersten Hauptfläche des Gehäuses. Dementsprechend ist der strahlungsemittierende Halbleiterchip besonders bevorzugt mittig an der ersten Hauptfläche des Gehäuses angeordnet.

Besonders bevorzugt ragt eine rückseitige Hauptfläche des strahlungsemittierenden Halbleiterchips über die Vertiefung.

Gemäß einer weiteren Ausführungsform umfasst das

strahlungsemittierende Bauelement einen Verguss, der unter dem strahlungsemittierenden Halbleiterchip und in der

Vertiefung angeordnet ist. Besonders bevorzugt handelt es sich bei dem Verguss um einen diffus reflektierenden Verguss. Bei dem diffus reflektierenden Verguss handelt es sich bevorzugt um ein Silikon, in das Titandioxidpartikel

eingebracht sind. Der Verguss bildet auf der Bodenfläche der Vertiefung bevorzugt eine Dicke zwischen einschließlich 20 Mikrometer und einschließlich 1000 Mikrometer aus.

Gemäß einer Ausführungsform des strahlungsemittierenden

Bauelements umfasst das Gehäuse eine Kavität, die von

Seitenwänden rahmenartig umlaufen wird. Besonders bevorzugt ist eine Bodenfläche der Kavität des Gehäuses vollständig mit dem Verguss bedeckt.

Gemäß einer weiteren Ausführungsform des

strahlungsemittierenden Bauelements reicht der Verguss bis zu einer rückseitigen Hauptfläche des strahlungsemittierenden Halbleiterchips .

Gemäß einer bevorzugten Ausführungsform des

strahlungsemittierenden Bauelements umfasst das Gehäuse einen H-förmigen Abstandshalter mit zwei Längsstegen, zwischen denen ein Quersteg angeordnet ist. Der Quersteg verläuft hierbei bevorzugt zwischen den beiden elektrischen Kontaktstellen. Bei dieser Ausführungsform des

strahlungsemittierenden Bauelements liegt der

strahlungsemittierende Halbleiterchip bevorzugt mit einer rückseitigen Hauptfläche auf mindestens einem Längssteg und/oder dem Quersteg auf. Auf dieser Art und Weise kann der Halbleiterchip besonders gut mit einem definierten Abstand zu der elektrischen Kontaktstelle befestigt werden.

Besonders bevorzugt ist ein Spalt zwischen dem Quersteg und dem Längssteg des H-förmigen Abstandshalters ausgebildet. Dieser wirkt beim Einbringen der flüssigen reflektierenden Vergussmasse und beim Umfließen des strahlungsemittierenden Halbleiterchips mit Vorteil als Entlüftungsschlitz, sodass Luftblasen in dem Verguss mit Vorteil minimiert werden können. Außerdem kann die reflektierende Vergussmasse

besonders gut von einer Seite des Halbleiterchips unter diesem hindurch bis zur anderen Seite des Halbleiterchips fließen .

Gemäß einer weiteren Ausführungsform umfasst das

strahlungsemittierende Bauelement ein Konversionselement, das elektromagnetische Strahlung des ersten Wellenlängenbereichs in elektromagnetische Strahlung eines zweiten

Wellenlängenbereichs umwandelt, der von dem ersten

Wellenlängenbereich verschieden ist. Eine Außenfläche des Konversionselements schließt besonders bevorzugt bündig mit dem Gehäuse ab, so dass eine ebene Fläche ausgebildet wird, die der Montagefläche des strahlungsemittierenden Bauelements gegenüberliegt. Das Konversionselement ist beispielsweise in der Kavität angeordnet. Beispielsweise füllt das

Konversionselement die Kavität vollständig aus.

Beispielsweise umfasst das Konversionselement eine Vergussmasse, wie ein Silikon, in das Leuchtstoffpartikel eingebracht sind.

Das Gehäuse, das Verfahren zur Herstellung des

strahlungsemittierenden Bauelements und das

strahlungsemittierende Bauelement basieren insbesondere auf der im Folgenden beschriebenen Idee.

Der reflektierende Verguss auf der ersten Hauptfläche des Gehäuses erhöht die Effizienz des strahlungsemittierenden Bauelements, da der reflektierende Verguss in der Regel deutlich mehr elektromagnetische Strahlung des

Halbleiterchips reflektiert als Metalloberflächen des

Leiterrahmens oder die Oberflächen von Gehäusematerialien, aus denen der Gehäusekörper in der Regel gebildet ist.

Insbesondere ist es durch die Verwendung des beschriebenen Gehäuses mit der Vertiefung bei dem beschriebenen Verfahren mit Vorteil möglich, die Bodenkanten der Seitenwände, die umlaufend um die Kavität angeordnet sind, die Bereiche unter dem strahlungsemittierenden Halbleiterchip und die Bereiche an den Rändern des strahlungsemittierenden Halbleiterchip mit dem Verguss auf einfache Art und Weise zu versehen, so dass die Effizienz des fertigen strahlungsemittierenden

Bauelements mit Vorteil erhöht ist. Eine Bedeckung der

Bodenkanten der Seitenwände umlaufend um die Kavität ist insbesondere häufig notwendig, da die Bodenkanten metallische Bereiche aufweisen, die beim Umformen des Leiterrahmens mit dem Gehäusekörper notwendig sind, aber die Effizienz des strahlungsemittierenden Bauelements verringern können.

Die Vertiefung an der ersten Hauptfläche des Gehäuses ermöglicht es weiterhin, an der ersten Hauptfläche des Gehäuses eine vergleichsweise dicke Schicht des

reflektierenden Vergusses anzuordnen. Die Vertiefung in der ersten Hauptfläche des Gehäuses hat den weiteren

vorteilhaften Effekt, dass beim Einbringen der flüssigen reflektierenden Vergussmasse die Seitenflächen des

strahlungsemittierenden Halbleiterchips nur wenig oder gar nicht mit der flüssigen reflektierenden Vergussmasse benetzt werden .

Bei Verwendung eines Gehäuses ohne Vertiefung in der ersten Hauptfläche läuft die flüssige reflektierende Vergussmasse außerdem in der Regel an den Seitenflächen des

Halbleiterchips nach oben, so dass es zu einer verminderten Effizienz des strahlungsemittierenden Bauelements aufgrund von Rückreflexionen im strahlungsemittierenden Halbleiterchip kommt .

Das strahlungsemittierende Bauelement findet beispielsweise Einsatz bei Automobilanwendungen und

Displayhinterleuchtungen .

Weitere vorteilhafte Ausführungsformen und Weiterbildungen des Gehäuses, des Verfahrens zur Herstellung eines

strahlungsemittierenden Bauelements und des

strahlungsemittierenden Bauelements ergeben sich aus den im Folgenden in Verbindung mit den Figuren beschriebenen

Ausführungsbeispielen .

Anhand der schematischen Darstellungen der Figuren 1 bis 7 wird ein Gehäuse gemäß einem Ausführungsbeispiel näher erläutert . Anhand der schematischen Schnittdarstellungen der Figuren 8 bis 13 wird ein Verfahren zur Herstellung eines

strahlungsemittierenden Bauelements gemäß einem

Ausführungsbeispiel näher erläutert.

Die schematischen Darstellungen der Figuren 14 und 15 zeigen ein strahlungsemittierendes Bauelement gemäß einem

Ausführungsbeispiel .

Die schematischen Darstellungen der Figuren 16 und 17 zeigen ein strahlungsemittierendes Bauelement gemäß jeweils einem weiteren Ausführungsbeispiel.

Gleiche, gleichartige oder gleich wirkende Elemente sind in den Figuren mit denselben Bezugszeichen versehen. Die Figuren und die Größenverhältnisse der in den Figuren dargestellten Elemente untereinander sind nicht zwingend als maßstäblich zu betrachten. Vielmehr können einzelne Elemente, insbesondere Schichtdicken, zur besseren Darstellbarkeit und/oder zum besseren Verständnis übertrieben groß dargestellt sein.

Das Gehäuse 1 gemäß dem Ausführungsbeispiel der Figuren 1 bis 7 weist einen Gehäusekörper 2 auf, in den ein Leiterrahmen 3 eingebettet ist. Der Gehäusekörper 2 ist beispielsweise aus einer Epoxid-Formmasse gebildet, während der Leiterrahmen 3 ein Metall aufweist.

Das Gehäuse 1 weist eine erste Hauptfläche 6 auf, in der zwei Vertiefungen 7 angeordnet sind. Vorliegend weist das Gehäuse 1 Seitenwände 4 auf, die eine Kavität 5 rahmenartig

begrenzen. Die Seitenwände 4 weisen eine rechteckige Form auf. Die erste Hauptfläche 6 des Gehäuses 1 bildet eine

Bodenfläche der Kavität aus (Figur 1) . Die Vertiefungen 7 weisen hierbei die Form einer Wanne auf. Bei dem vorliegenden Ausführungsbeispiel sind die Vertiefungen 7 gleich

ausgebildet. Insbesondere ist das Gehäuse gemäß dem

Ausführungsbeispiel der Figur 1 punktsymmetrisch zu einem Mittelpunkt M ausgebildet.

Der Leiterrahmen 3 weist zwei elektrische Kontaktstellen 8 auf, deren Kontaktflächen 9 in Draufsicht in Figur 1 gezeigt sind. Die elektrischen Kontaktstellen 8 sind mittig in der Kavität 5 des Gehäuses 1 angeordnet. Seitlich von jeder elektrischen Kontaktstelle 8 ist eine Vertiefung 7 in der ersten Hauptfläche 6 des Gehäuses 1 eingebracht. Jede der Vertiefungen 7 grenzt an gegenüberliegende Seitenwände 4 des Gehäuses 1 an. Die Vertiefungen 7 weisen eine Bodenfläche 29 auf, die gegenüber der Kontaktflächen 9 der elektrischen Kontaktstellen vertikal beabstandet sind. Vorliegend ist die Bodenfläche 29 der Vertiefungen 7 zu einer Montagefläche 19 des Gehäuses 1 abgesenkt.

Außerdem umfasst der Gehäusekörper vorliegend einen H- förmigen Abstandshalter 10 mit zwei Längsstegen 11, zwischen denen ein Quersteg 12 angeordnet ist. Der Quersteg 12 verläuft hierbei zwischen den beiden elektrischen

Kontaktstellen 8. Die Längsstege 11 verlaufen entlang zweier gegenüberliegender Seitenwände 4. Die eingezeichnete H- förmige Fläche in der Draufsicht auf das Gehäuse 1 gemäß der Figur 5 verdeutlicht schematisch die Form des H-förmigen Abstandshalters 10.

Bei dem vorliegenden Ausführungsbeispiel sind die

Vertiefungen 7 in dem Gehäusekörper 2 ausgebildet. Die

Bodenkanten der Seitenwände 4 des Gehäusekörpers 2 umfassen weiterhin metallische Bereiche 13, die beim Umformen des Leiterrahmens 3 mit dem Gehäusekörper 2 aus

prozesstechnischen Gründen notwendig sind.

Zwischen dem Quersteg 12 und den beiden Längsstegen 11 des H- förmigen Abstandshalters 10 ist jeweils ein Spalt 14

angeordnet. Mit anderen Worten liegen Oberflächen des

Querstegs 12 und der Längsstege 11 in einer gemeinsamen

Ebene, während im Bereich der beiden Spalten 14 die

Oberfläche in Richtung der Bodenfläche der Kavität 6

abgesenkt ist. Weiterhin sind Ecken des Querstegs 12

abgerundet ausgebildet.

Die Figuren 2 und 3 zeigen schematische perspektivische

Ansichten des Leiterrahmens 3, der in den Gehäusekörper 2 eingebettet ist. Der Leiterrahmen 3 umfasst beispielsweise einen Kupferkern, der mit einer Silberbeschichtung versehen ist .

Figur 2 zeigt eine vorderseitige Hauptfläche des

Leiterrahmens 3 mit den Kontaktflächen 9 der elektrischen Kontaktstellen 8, während Figur 3 eine gegenüberliegende rückseitige Hauptfläche des Leiterrahmens 3 illustriert. Der Leiterrahmen 3 weist an der rückseitigen Hauptfläche externe elektrische Anschlussstellen 15 auf, die an einer

Montagefläche 18 des Gehäuses 1 frei liegen.

Jede elektrische Kontaktstelle 8 ist mit dem restlichen

Leiterrahmen 3 durch einen Gelenksteg 16 mechanisch

verbunden. Der Gelenksteg 16 weist eine geringere Dicke auf als die elektrische Kontaktstelle 8. Beispielsweise weist der Gelenksteg 16 ungefähr die Hälfte der Dicke der elektrischen Kontaktstelle 8 auf. Wie die Schnittansicht des Gehäuses 1 der Figur 4 zeigt, sind die elektrischen Kontaktstellen 8 derart in den Gehäusekörper 2 eingebettet, dass die Kontaktflächen 9 der elektrischen Kontaktstellen 8 durch den Gehäusekörper 2 begrenzt sind.

Der Quersteg 12 des H-förmigen Abstandshalters 10 ragt in einer vertikalen Richtung über die Kontaktflächen 9 der elektrischen Kontaktstellen 8 hinaus und bildet ein Podest 31 für einen zu montierenden strahlungsemittierenden

Halbleiterchip aus (siehe auch Figur 6) . Die Seitenwände 4, die die Kavität 5 umrahmen, weisen eine Schräge auf, um einen Reflektor für die elektromagnetische Strahlung eines

strahlungsemittierenden Halbleiterchips 17 in der Kavität 5 auszubilden. Die Vertiefungen 7 sind in einer vertikalen Richtung beabstandet zu den Kontaktflächen 9 der elektrischen Kontaktstellen 8 angeordnet.

Figur 7 zeigt die Montagefläche 18 des Gehäuses 1 gemäß dem vorliegenden Ausführungsbeispiel. Die rückseitige Hauptfläche des Leiterrahmens 3, wie er anhand der Figuren 2 und 3 beschrieben wurde, liegt teilweise an der Montagefläche 18 des Gehäuses 1 frei. Insbesondere liegen externe elektrische Anschlussstellen 15 an der Montagefläche 18 frei. Die

externen elektrischen Anschlussstellen 15 weisen weiterhin Einbuchtungen 19 auf, die an den Kanten 20 des Gehäuses 1 angeordnet sind. Die Einbuchtungen 19 sind zur Kontrolle eines Lötvorgangs vorgesehen, mit dem das Gehäuse 1 auf einem weiteren Element, wie beispielsweise einem Anschlussträger, zu einem späteren Zeitpunkt befestigt wird.

Bei dem Verfahren gemäß dem Ausführungsbeispiel der Figuren 8 bis 13 wird zunächst ein Gehäuse 1 bereitgestellt, wie es bereits anhand der Figuren 1 bis 7 beschrieben wurde (Figur 8) .

In einem nächsten Schritt wird ein strahlungsemittierender Halbleiterchip 17, der als Flip-Chip ausgebildet ist, mit beiden elektrischen Kontakten 21 auf die Kontaktflächen 9 der elektrischen Kontaktstellen 8 mit einem Lot 22 befestigt.

Der Flip-Chip 17 ist in der schematischen Schnittdarstellung der Figur 10 gezeigt. Der Flip-Chip 17 weist einen Träger 23 auf, auf den eine epitaktische Halbleiterschichtenfolge 24 aufgebracht ist. Die epitaktische Halbleiterschichtenfolge 24 weist eine aktive Zone 25 auf, die im Betrieb

elektromagnetische Strahlung eines ersten

Wellenlängenbereichs erzeugt. An einer rückseitigen

Hauptfläche des Flip-Chips 17 sind zwei elektrische Kontakte 21 zur Bestromung des Flip-Chips 17 angeordnet.

Vorliegend basiert die epitaktische Halbleiterschichtenfolge 24 und insbesondere die aktive Zone 25 auf einem

Nitridverbindungshalbleitermaterial, während der Träger 23 aus Saphir gebildet ist. Die aktive Zone 25 erzeugt im

Betrieb blaues Licht, das durch den Träger 23 ausgesandt wird .

Nachdem der strahlungsemittierende Halbleiterchip 17 auf den Kontaktflächen 9 befestigt wurde, wird eine flüssige

reflektierende Vergussmasse 26 in eine der Vertiefungen 7 des Gehäuses 1 eingebracht, beispielsweise durch Dispensen (Figur 11) . Bei der flüssigen reflektierenden Vergussmasse 26 handelt es sich vorliegend um ein Silikon, in das

Titandioxidpartikel eingebracht sind. Die flüssige reflektierende Vergussmasse 26 ist vorliegend diffus

reflektierend ausgebildet.

Die flüssige reflektierende Vergussmasse 26 füllt die

Vertiefung 7 aus und bildet dort einen Tropfen aus. Die

Vertiefung 7 mit der flüssigen reflektierenden Vergussmasse 26 dient als Reservoir für den Benetzungsprozess der ersten Hauptfläche 6 des Gehäuses 1. Ausgehend von der Vertiefung 7, in die die flüssige reflektierende Vergussmasse 26

eingebracht ist, fließt die reflektierende Vergussmasse 26 aufgrund von Kapillarkräften von der Vertiefung 7 unter den Flip-Chip 17 zu der gegenüberliegenden Vertiefung 7. Außerdem werden die Seitenwände 4 der Kavität 5 mit der flüssigen reflektierenden Vergussmasse 26 benetzt.

Figur 12 zeigt eine schematische Schnittdarstellung des

Gehäuses 1 während des Befüllungsvorgangs mit der flüssigen reflektierenden Vergussmasse 26 entlang der Linie AA' der Figur 5, während Figur 13 eine schematische

Schnittdarstellung des Gehäuses 1 während des

Befüllungsvorgangs mit der flüssigen reflektierenden

Vergussmasse 26 entlang der Linie BB ' der Figur 5 zeigt.

Die flüssige reflektierende Vergussmasse 26 kriecht aufgrund von Kapillarkräften unter den strahlungsemittierenden

Halbleiterchip 17 und umschließt das Lot 22, mit dem der strahlungsemittierende Halbleiterchip 17 auf den

Kontaktflächen 9 der elektrischen Kontaktstellen 8 befestigt ist (Figur 12) . Außerdem fließt die flüssige reflektierende Vergussmasse 26 aufgrund der Oberflächenspannung an den

Seitenwänden 4 der Kavität 5 hoch und bildet dadurch eine Mulde in der Mitte der ersten Hauptfläche 6 des Gehäuses 1 aus. Da die Vertiefung 7 jedoch mit der flüssigen reflektierenden Vergussmasse 26 gefüllt ist, entsteht auch in diesem Bereich eine vergleichsweise dicke, gut reflektierende Schicht der flüssigen reflektierenden Vergussmasse 26 (Figur 13) .

Die flüssige reflektierende Vergussmasse 26 wird zu einem festen reflektierenden Verguss 27 ausgehärtet (nicht

dargestellt) .

Das strahlungsemittierende Bauelement gemäß dem

Ausführungsbeispiel der Figuren 14 und 15 umfasst ein Gehäuse 1 mit einem Gehäusekörper 2, in den ein Leiterrahmen 3 eingebracht ist. Das Gehäuse 1 wurde beispielsweise anhand der Figuren 1 bis 7 bereits beschrieben. Der

strahlungsemittierende Halbleiterchip 17, der vorliegend als Flip-Chip 17 ausgebildet ist, ist mit zwei rückseitigen elektrischen Kontakten 21 durch ein Lot 22 mit jeweils einer Kontaktfläche 9 einer elektrischen Kontaktstelle 8 elektrisch leitend und mechanisch stabil verbunden (Figur 14) .

Das Gehäuse 1 weist eine erste Hauptfläche 6 auf, in die zwei Vertiefungen 7 eingebracht sind. Vorliegend weist das Gehäuse 1 eine Kavität 5 auf, die von Seitenwänden 4 rahmenartig umschlossen ist. Die erste Hauptfläche 6 des Gehäuses umfasst eine Bodenfläche 6 der Kavität 5.

Die Vertiefungen 7 sind mit einem reflektierenden Verguss 27 vollständig gefüllt, der sich bis unter eine rückseitige Hauptfläche 30 des strahlungsemittierenden Halbleiterchips 17 erstreckt. Der reflektierende Verguss 27 reicht bis zu einer rückseitigen Hauptfläche 30 des strahlungsemittierenden

Halbleiterchips 17. Zwischen den elektrischen Kontaktstellen 8 weist das Gehäuse 1 einen H-förmigen Abstandshalter 10 auf, auf dem der strahlungsemittierende Halbleiterchip 17

aufsitzt. Vorliegend ist der H-förmige Abstandshalter 10 Teil des Gehäusekörpers 2.

Wie Figur 15 zeigt, sind auch metallische Bereiche 13 der Bodenkanten der Seitenwände 4 der Kavität 5, die beim

Umformen des Leiterrahmens 3 mit dem Gehäusekörper 2

notwendig sind, vollständig von dem reflektierenden Verguss 27 bedeckt.

Das strahlungsemittierende Bauelement gemäß dem

Ausführungsbeispiel der Figur 16 weist im Vergleich zu dem strahlungsemittierenden Bauelement gemäß dem

Ausführungsbeispiel der Figuren 14 und 15 zusätzlich ein Konversionselement 28 auf, das elektromagnetische Strahlung des ersten Wellenlängenbereichs, die von dem

strahlungsemittierenden Halbleiterchip 17 ausgesandt wird, in elektromagnetische Strahlung eines anderen

Wellenlängenbereichs umwandelt.

Das strahlungsemittierende Bauelement gemäß dem

Ausführungsbeispiel der Figur 17 weist im Unterschied zu dem strahlungsemittierenden Bauelement gemäß dem

Ausführungsbeispiel der Figuren 14 und 15 ein Gehäuse 1 auf, bei dem die Vertiefungen 7 in den Leiterrahmen 3 eingebracht sind .

Die Erfindung ist nicht durch die Beschreibung anhand der Ausführungsbeispiele auf diese beschränkt. Vielmehr umfasst die Erfindung jedes neue Merkmal sowie jede Kombination von Merkmalen, was insbesondere jede Kombination von Merkmalen in den Patentansprüchen beinhaltet, auch wenn dieses Merkmal oder diese Kombination selbst nicht explizit in den

Patentansprüchen oder Ausführungsbeispielen angegeben ist.

Bezugszeichenliste

1 Gehäuse

2 Gehäusekörper

3 Leiterrahmen

4 Seitenwand

5 Kavität

6 erste Hauptfläche des Gehäuses

7 Vertiefung

8 elektrische Kontaktstelle

9 Kontaktfläche

10 H-förmiger Abstandshalter

11 Längssteg

12 Quersteg

13 metallische Bereiche

14 Spalt

15 externe elektrische Anschlussstelle

16 Gelenksteg

17 Halbleiterchip

18 Montagefläche

19 Einbuchtung

20 Kante

21 elektrischer Kontakt

22 Lot

23 Träger

24 epitaktische Halbleiterschichtenfolge

25 aktive Zone

26 flüssige reflektierenden Vergussmasse

27 fester reflektierender Verguss

28 Konversionselement

29 Bodenfläche der Vertiefung

30 rückseitige Hauptfläche

31 Podest M Mittelpunkt