Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SUBSTITUTED PYRIDIN-4-YLMETHYL SULFONAMIDES
Document Type and Number:
WIPO Patent Application WO/2009/141290
Kind Code:
A9
Abstract:
The present invention relates to the use of pyridin-4-ylmethyl sulfonamides of formula (I), wherein Ra, n, A, Y and D are as defined in the claims and the N-oxides and the salts thereof for combating phytopathogenic harmful fungi, and and to compositions and seeds comprising at least one such compound. The invention also relates to to novel substituted sulfonic acid amide compounds and processes for preparing these compounds.

Inventors:
GRAMMENOS WASSILIOS (DE)
GLAETTLI ALICE (DE)
LOHMANN JAN KLAAS (DE)
MUELLER BERND (DE)
VRETTOU MARIANNA (DE)
Application Number:
PCT/EP2009/055963
Publication Date:
November 25, 2010
Filing Date:
May 18, 2009
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BASF SE (DE)
GRAMMENOS WASSILIOS (DE)
GLAETTLI ALICE (DE)
LOHMANN JAN KLAAS (DE)
MUELLER BERND (DE)
VRETTOU MARIANNA (DE)
International Classes:
A01N43/40; A01N43/50; A01N43/54; A01N43/56; A01P3/00; C07D213/00
Attorney, Agent or Firm:
BASF SE (67056 Ludwigshafen, DE)
Download PDF:
Claims:
Claims

1. The use of compounds of formula I

wherein:

Ra is halogen, CN, NH2, NO2, OH, SH, Ci-C6-alkyl, Ci-C6-haloalkyl, Ci-C6-alk- oxy, Ci-Cβ-haloalkoxy, d-Cβ-alkylthio, Ci-C6-haloalkylthio, Ci-Cβ-alkylsul- finyl, Ci-Cβ-haloalkylsulfinyl, d-Cβ-alkylsulfonyl, d-Cβ-haloalkylsulfonyl, Ci-Cβ-alkylcarbonyl, d-Cβ-haloalkylcarbonyl, d-Cβ-alkoxycarbonyl,

Ci-Cβ-haloalkoxycarbonyl, Ci-Cβ-alkylamino, Ci-C6-haloalkylamino, di(Ci-C6-alkyl)amino, di(Ci-C6-haloalkyl)amino, Ci-Cβ-alkylaminocarbonyl, di(Ci-C6-alkyl)aminocarbonyl, Ci-Ce-alkoxy-Ci-Cβ-alkyl, C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, Cs-Cs-cycloalkyl or Ci- C6-alkyl-C3-C8-cycloalkyl; and/or

two radicals Ra that are bound to adjacent ring member atoms of the pyridine ring may form together with said ring member atoms a fused 5-, 6- or 7-membered saturated, partially unsaturated or aromatic cycle, which may be a carbocycle or heterocycle, wherein the ring member atoms of the fused heterocycle include besides carbon atoms 1 , 2, 3 or 4 heteroatoms selected from the group of N, O and S, and wherein the fused carbocycle or heterocycle is unsubstituted or carries 1 , 2, 3 or 4 identical or different groups as defined for Ra;

n indicates the number of the substituents Ra on the pyridine ring and n is 0, 1 , 2, 3 or 4, wherein Ra are identical or different if n is 2, 3 or 4;

R is hydrogen, Ci-Cβ-alkyl, d-Cβ-haloalkyl, C-i-Cβ-alkoxy, d-Cβ-haloalkoxy, Ci-Cβ-alkylamino, di(Ci-C6-alkyl)amino, d-Cβ-alkylcarbonyl, Ci-Cβ-halo- alkylcarbonyl, C-i-Ce-alkoxy-d-Ce-alkyl, d-Ce-haloalkoxy-d-Ce-alkyl, C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C3-C8-cycloalkyl, Ci-C6-alkyl-C3-C8-cycloalkyl or benzyl, wherein the phenyl moiety of benzyl is unsubstituted or carries 1 , 2, 3, 4, or 5 substituents selected from the group consisting of CN, halogen, Ci-C6-alkyl, d-Ce-haloalkyl, d-Ce-alkoxy, d-Cβ-haloalkoxy, d-Cβ-alkylcarbonyl, d-Cβ-haloalkylcarbonyl, d-Cβ-alkoxycarbonyl and di(Ci-C6-alkyl)aminocarbonyl;

A is d-Cβ-alkanediyl, Ci-C6-haloalkanediyl, C2-C6-alkenediyl, C2-C6-halo- alkenediyl, C2-C6-alkynediyl, C2-C6-haloalkynediyl, Cs-Cs-cycloalkylene or C3-C8-cycloalkenylene, wherein the aforementioned divalent radicals are unsubstituted or carry 1 , 2, 3 or 4 identical or different groups Rb:

Rb is halogen, CN, NO2, d-Ce-alkyl, d-Ce-haloalkyl, d-Ce-alkoxy,

C-i-Cβ-haloalkoxy, C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, (Ci-C6-alkyl)carbonyl, (Ci-C6-alkoxy)carbonyl, Ci-Cβ-alkylamino, di(Ci-C6-alkyl)amino, (Ci-Cβ-alkyOaminocarbonyl and di(Ci-C6-alkyl)aminocarbonyl;

if A is a cyclic divalent radical, two radicals Rb that are bound to adjacent ring member atoms of the group A may form together with said ring member atoms a fused 5-, 6- or 7-membered saturated, partially unsaturated or aromatic cycle, which may be a carbocycle or heterocycle, wherein the ring member atoms of the fused heterocycle include besides carbon atoms 1 , 2,

3 or 4 heteroatoms selected from the group of N, O and S, and wherein the fused carbocycle or heterocycle is unsubstituted or carries 1 , 2, 3 or 4 identical or different groups as defined for Rb;

Y is a direct bond or a divalent group selected from -O-, -OCH2-, -CH2O-, -S-,

-S(=O)-, -S(=O)2-, d-Ce-alkanediyl, -N(Rπ )- and -C(NORπ )-;

Rπ is hydrogen or Ci-C6-alkyl;

D is C3-Cio-cycloalkyl, Cs-do-cycloalkenyl, phenyl or a 5- or 6-membered heteroaryl, wherein the ring member atoms of the heteroaryl include besides carbon atoms 1 , 2, 3 or 4 heteroatoms selected from the group of N, O and S and wherein the Cs-do-cycloalkyl, C3-do-cycloalkenyl, phenyl and heteroaryl for their part are unsubstituted or carry 1 , 2, 3, 4 or 5 identical or different groups Rc:

Rc is halogen, CN, NO2, NH2, d-Ce-alkyl, d-Ce-haloalkyl, d-Ce-alkoxy, Ci-Cβ-haloalkoxy, Ci-C6-alkylamino, di(Ci-C6-alkyl)amino, Ci-Cβ-alkyl- thio, d-Cβ-haloalkylthio, Ci-Cβ-alkylsulfinyl, Ci-Cβ-haloalkylsulfinyl, d-Ce-alkylsulfonyl, Ci-Ce-haloalkylsulfonyl, Ci-Ce-alkoxy-Ci-Ce-alkyl,

C-i-Ce-haloalkoxy-C-i-Ce-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C(=O)R', C(=NOR")R'", Cs-Cs-cycloalkyl, Ci-Ce-alkyl-Cs-Cs-cycloalkyl, phenyl, phenoxy, phenoxy-Ci-Cβ-alkyl or a 5- or 6-membered heteroaryl, wherein the ring member atoms of the heteroaryl include besides carbon atoms 1 , 2, 3 or 4 heteroatoms selected from the group of N,

O and S, and wherein the aforementioned cyclic radicals are unsubstituted or carry 1, 2, 3 or 4 identical or different substituents Rd:

R1 is hydrogen, Nhfe, Ci-Cg-aikyl, Ci-Cβ-haloalkyl, Ca-Cβ-alkenyl,

C2-C6-alkynyl, Ci-Ce-alkoxy, Ci-Cβ-alkoxy-Ci-Cβ-alkoxy, Ci-Cθ-haloalkoxy. CrCβ-alkylamino or di(CrC6-alkyl)amino;

R" is hydrogen, Ci-Cβ-alkyl, Ci-C6-haloalkyl, C∑-Cβ-alkenyl, C2-C6-alkynyl or Ci-Cβ-alkoxy-Ci-Cs-alkyI,

R1" is hydrogen or CrCβ-alkyl;

Rd is halogen, CN, CrCβ-alkyl, d-Cβ-naloalkyl, CrCe-alkoxy or d-Cβ-haloalkoxy;

and/or two radicals Rc that are bound to adjacent ring member atoms of the group D may form together with said ring member atoms a fused 5-, 6- or 7-membered saturated, partially unsaturated or aromatic aromatic cycle, which may be a carbocycle or heterocycle, wherein the ring member atoms of the fused heterocycle include besides carbon atoms 1 , 2, 3 or 4 heteroatoms selected from the group of N, O and S, and wherein the fused carbocycle or heterocycle is unsubstituted or carries 1 , 2, 3 or 4 identical or different groups R0:

Re is halogen, CN, CrCβ-alkyl, CrCβ-haloalkyl, Ci-C$-alkoxy or d-Cβ-haloalkoxy;

and its N-oxides and agriculturally acceptable salts thereof for combating phytopathogenic fungi.

2. Agrochemical compositions comprising a solvent or solid carrier and at least a compound of formula I or an N-oxide or an agriculturally acceptable salt thereof, as defined in claim 1.

3. Compositions according to claim 2 comprising at least one further active substance.

4. A method for combating phytopathogenic fungi, which process comprises treating the fungi or the materials, plants, the soil or seeds to be protected against fungal attack, with an effective amount of at least one compound of formula I of an or an N-oxide or an agriculturally acceptable salt thereof, as defined in claim 1.

5. Seed comprising a compound of formula I, or an N-oxide or an agriculturally acceptable salt thereof, as defined in claim 1 , in an amount of from 0.1 g to 10 kg per 100 kg of seed.

6. Compounds according to claim 1 , wherein n is 1 , 2, 3 or 4.

7. Compounds according to claim 6, wherein A is cyclopentylene or cyclohexylene.

8. Compounds according to claim 6, wherein A is d-Cβ-alkanediyl.

9. Compounds according to claim 6, wherein A is cyclopropylene.

10. Compounds of formula I according to claim any of the claims 6 to 9, wherein D is phenyl, which is unsubstituted or carries 1 , 2, 3, 4 or 5 identical or different groups Rc.

1 1. Compounds according to any of claims 6 to 10, wherein R is hydrogen.

12. Compounds according to any of claims 6 to 11 , wherein Y is -O- or a direct bond.

13. A process for preparing compounds of formula I as defined in claim 6, which comprises reacting compounds of formula Il

wherein R, Ra and n are as defined in claim 6, under basic conditions with sulfonic acid derivatives of formula III

O

L-S-A-Y-D III,

I l

O wherein A, Y and D are as defined in claim 6 and L is a nucleophilic leaving group.

14. A process for preparing compounds of formula I as defined in claim 6, which comprises reacting compounds of formula IV

(Ra)n wherein Ra and n are as defined in claim 6 and L' is a leaving group, under basic conditions wherein R, A, Y and D are as defined in claim 6.

Description:
Substituted pyridin-4-ylmethyl sulfonamides

Description

The present invention relates to the use of compounds of formula I

wherein:

R a is halogen, CN, NH 2 , NO 2 , OH, SH, d-Ce-alkyl, d-Ce-haloalkyl, d-Ce-alkoxy, d-Ce-haloalkoxy, d-Ce-alkylthio, d-Ce-haloalkylthio, Ci-Ce-alkylsulfinyl,

Ci-Cβ-haloalkylsulfinyl, d-Cβ-alkylsulfonyl, Ci-C6-haloalkylsulfonyl, Ci-Cβ-alkyl- carbonyl, d-Cβ-haloalkylcarbonyl, d-Cβ-alkoxycarbonyl, Ci-Cβ-haloalkoxy- carbonyl, Ci-C6-alkylamino, Ci-C6-haloalkylamino, di(d-C6-alkyl)amino, di(Ci-C6-haloalkyl)amino, d-Cβ-alkylaminocarbonyl, di(Ci-C6-alkyl)aminocarbo- nyl, d-Ce-alkoxy-d-Cβ-alkyl, C 2 -C6-alkenyl, C 2 -C6-haloalkenyl, C 2 -C6-alkynyl,

C 2 -C6-haloalkynyl, Cs-Cs-cycloalkyl or d-Cβ-alkyl-Cs-Cs-cycloalkyl; and/or

two radicals R a that are bound to adjacent ring member atoms of the pyridine ring may form together with said ring member atoms a fused 5-, 6- or 7-membered saturated, partially unsaturated or aromatic cycle, which may be a carbocycle or heterocycle, wherein the ring member atoms of the fused heterocycle include besides carbon atoms 1 , 2, 3 or 4 heteroatoms selected from the group of N, O and S, and wherein the fused carbocycle or heterocycle is unsubstituted or carries 1 , 2, 3 or 4 identical or different groups as defined for R a ;

n indicates the number of the substituents R a on the pyridine ring and n is 0, 1 , 2, 3 or 4, wherein R a are identical or different if n is 2, 3 or 4;

R is hydrogen, Ci-C6-alkyl, d-Cβ-haloalkyl, d-Cβ-alkoxy, d-Cβ-haloalkoxy, d-C6-alkylamino, di(d-C6-alkyl)amino, d-Cβ-alkylcarbonyl, d-Cβ-haloalkyl- carbonyl, d-Ce-alkoxy-d-Cβ-alkyl, d-Ce-haloalkoxy-d-Cβ-alkyl, C 2 -C6-alkenyl, C 2 -C6-haloalkenyl, C 2 -C6-alkynyl, Cs-Cs-cycloalkyl, d-Cβ-alkyl-Cs-Cs-cycloalkyl or benzyl, wherein the phenyl moiety of benzyl is unsubstituted or carries 1 , 2, 3, 4, or 5 substituents selected from the group consisting of CN, halogen, Ci-Cβ-alkyl, d-Cβ-haloalkyl, d-Cβ-alkoxy, d-Cβ-haloalkoxy, Ci-Cβ-alkylcarbonyl, Ci-Cβ-halo- alkylcarbonyl, Ci-C6-alkoxycarbonyl and di(Ci-C6-alkyl)aminocarbonyl;

A is Ci-Cβ-alkanediyl, Ci-Cβ-haloalkanediyl, C 2 -C6-alkenediyl, C 2 -C6-haloalkenediyl, C 2 -C6-alkynediyl, d-Cβ-haloalkynediyl, Cs-Cs-cycloalkylene or Cs-Cs-cycloalken- ylene, wherein the aforementioned divalent radicals are unsubstituted or carry 1 ,

2, 3 or 4 identical or different groups R b : R b is halogen, CN, NO 2 , d-Ce-alkyl, d-Ce-haloalkyl, Ci-C 6 -alkoxy, d-Ce-halo- alkoxy, C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, (Ci-C6-alkyl)carbonyl, (Ci-C6-alkoxy)carbonyl, Ci-Cβ-alkylamino, di(Ci-C6-alkyl)amino, (d-Ce-alky^aminocarbonyl and di(Ci-C6-alkyl)aminocarbonyl;

if A is a cyclic divalent radical, two radicals R b that are bound to adjacent ring member atoms of the group A may form together with said ring member atoms a fused 5-, 6- or 7-membered saturated, partially unsaturated or aromatic cycle, which may be a carbocycle or heterocycle, wherein the ring member atoms of the fused heterocycle include besides carbon atoms 1 , 2, 3 or 4 heteroatoms selected from the group of N, O and S, and wherein the fused carbocycle or heterocycle is unsubstituted or carries 1 , 2, 3 or 4 identical or different groups as defined for R b ;

Y is a direct bond or a divalent group selected from -O-, -OCH2-, -CH2O-, -S-, -S(=O)-, -S(=O) 2 -, d-Ce-alkanediyl, -N(R π )- and -C(NOR π )-;

R π is hydrogen or Ci-C 6 -alkyl;

D is C3-Cio-cycloalkyl, C3-Cio-cycloalkenyl, phenyl or a 5- or 6-membered het- eroaryl, wherein the ring member atoms of the heteroaryl include besides carbon atoms 1 , 2, 3 or 4 heteroatoms selected from the group of N, O and S and wherein the C3-Cio-cycloalkyl, C3-Cio-cycloalkenyl, phenyl and heteroaryl for their part are unsubstituted or carry 1 , 2, 3, 4 or 5 identical or different groups R c :

R c is halogen, CN, NO 2 , NH 2 , Ci-C 6 -alkyl, Ci-C 6 -haloalkyl, d-Ce-alkoxy, d-Cβ-haloalkoxy, Ci-Cβ-alkylamino, di(Ci-C6-alkyl)amino, d-Cβ-alkylthio, d-Ce-haloalkylthio, Ci-Ce-alkylsulfinyl, Ci-Ce-haloalkylsulfinyl, d-Ce-alkyl- sulfonyl, Ci-Cβ-haloalkylsulfonyl, Ci-Ce-alkoxy-d-Cβ-alkyl, Ci-C6-halo- alkoxy-d-Ce-alkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -alkynyl, C(=O)R', C(=NOR")R'", C3-C8-cycloalkyl, Ci-C6-alkyl-C3-C8-cycloalkyl, phenyl, phenoxy, phenoxy- Ci-Cβ-alkyl or a 5- or 6-membered heteroaryl, wherein the ring member at- oms of the heteroaryl include besides carbon atoms 1 , 2, 3 or 4 heteroatoms selected from the group of N, O and S, and wherein the aforementioned cyclic radicals are unsubstituted or carry 1 , 2, 3 or 4 identical or different substituents R d :

R' is hydrogen, NH 2 , d-Ce-alkyl, d-Ce-haloalkyl, C 2 -C 6 -alkenyl,

C 2 -C6-alkynyl, d-Cβ-alkoxy, Ci-Ce-alkoxy-d-Cβ-alkoxy, Ci-C6-halo- alkoxy, Ci-Cβ-alkylamino or di(Ci-C6-alkyl)amino; R" is hydrogen, Ci-CValkyl. d-Cβ-haloaUcyl, CsrCs-alkenyl, Cϋ-Cβ-alkynyl or Ct-Cβ-alkoxy-Ci-Cβ-aiky),

R" is hydrogen or Ci-Cβ-alkyi;

R 4 " is halogen, CN, CrCβ-atkyi, Ci-Cs-haloalkyl, Ci-Cβ-alkoxy or Ci-Cr hatoalkoxy;

and/or two radicals R 6 that are bound to adjacent ring member atoms of the group D may form together with said ring member atoms a fused 5-, 6- or

7-membered saturated* partially unsaturated or aromatic aromatic cycle, which may be a carbocycla or hβtβrocyde, wherein the ring member atoms of the fused heterocyde include besides carbon atoms 1, 2, 3 or 4 heteroa- toms selected from the group of N, O and S, and wherein the fused carbo- cycle or heterocyde is unsubstituted or carries 1 , 2, 3 or 4 identical or different groups R β :

R" is halogen, CN, Ci-Cε-alkyl. Ci-C 3 -haioalkyf . Ci-Cβ-alkoxy or

Ci-Cε-haloalkoxy:

and its N-oxides and agriculturally acceptable salts thereof for combating phytopatho- genic fungi.

Hie invention also relates to processes and intermediates for preparing such com- pounds, to agrochemical compositions comprising a solvent or solid carrier and at least a compound of formula I or an N-oxkte or an agriculturally acceptable salt thereof and their use for combating phytopathogenic fungi, and seed comprising a compound of formula I, or an N-oxide or an agriculturally acceptable salt thereof, to new compounds of formula I, and processes and intermediates for preparing such compounds. According to a further aspect, the invention provides compounds of formula I as defined above, wherein n is 1, 2, 3 or 4.

Substituted alkylsuifonic acid amides with an unsubstituted ρyridin-4-ylmethyl bonded to the amide group are known, inter alia the following compounds: C-phenyt- N-pyπdiπ-4-ylmethyl-methanesulfonamide and 3-<4-fluoro-phenoxy)-proρane-1 -sulfonic acid (pyridin-4-ylrπethyl}-amide. No indication is as to which these compounds are fungicidal or of any other agrochemical use.

WO 05/033081 describes pyridin-4-ylmβthyl sulfonamides and their use for combating phytopathαgenic fungi. WO 06/097489 and WO 08/031824 describe various øyri- din-4-yknethylamidβs of biphenyl sulfonic acid and their use as fungicides and insecfr- cides, respectively. WO 07/093599 and WO 08/022937 describe pyridin-4-ylmethyt- amides of pyricHyteulfonic acid and thiophenesulfonic acid, respectively, and their use as fungicides.

The compounds according to the present invention differ from those described in WO 05/033081 and WO 06/097489 by having a non-aromatic group such as alkyl or cycloalkyl bound to sulfur of the sulfonamide group.

With respect to their fungicidal activity, the action of the known compounds is not always completely satisfactory. Based on this, it was an object of the present invention to provide compounds having improved action and/or a broadened activity spectrum against harmful fungi. This object is achieved by substituted pyridin-4-ylmethyl sulfonamides of formula I and its N-oxides and their salts, in particular the agriculturally acceptable salts, as defined herein.

The compounds I can be prepared by various routes in analogy to prior art proces- ses known per se for preparing sulfonamides and, advantageously, by the synthesis shown in the following schemes and in the experimental part of this application.

A further aspect of the present invention relates to a process for preparing compounds I as defined before, which comprises reacting compounds II, wherein R a , n, and R are defined as above, under basic conditions with compounds III, wherein A, Y and D are defined as above and L is a nucleophilic leaving group such as halogen, substituted phenoxy, N3, heterocyclyl or heterocyclyloxy, preferably pentafluorphenoxy, heterocyclyl such as imazolyl, pyrazolyl or triazolyl, or halogen such as chloro, fluoro or bromo, as shown below:

This reaction is usually carried out at temperatures of from -30 to 120 0 C, preferably from -10 to 100 0 C, in an inert organic solvent in the presence of a base.

Suitable solvents are aliphatic hydrocarbons, such as pentane, hexane, cyclohex- ane and petroleum ether, aromatic hydrocarbons, such as toluene, o-, m- and p-xylene, halogenated hydrocarbons, such as dichloromethane (DCM), chloroform and chloro- benzene, ethers, such as diethyl ether, diisopropyl ether, methyl tert. -butyl ether

(MTBE), dioxane, anisole and tetrahydrofuran (THF), nitriles such as acetonitrile and propionitrile, ketones such as acetone, methyl ethyl ketone, diethyl ketone and tert- butyl methyl ketone, and also dimethyl sulfoxide (DMSO), dimethyl formamide (DMF) and dimethyl acetamide, preferably THF, MTBE, dichloromethane, chloroform, aceto- nitrile, toluene or DMF, and also mixtures thereof.

Suitable bases are, in general, inorganic compounds such as alkali metal and alkaline earth metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide and calcium hydroxide, alkali metal and alkaline earth metal oxides such as lithium oxide, sodium oxide, calcium oxide and magnesium oxide, alkali metal and alka- line earth metal hydrides such as lithium hydride, sodium hydride, potassium hydride and calcium hydride, alkali metal and alkaline earth metal carbonates such as lithium carbonate, potassium carbonate and calcium carbonate, and also alkali metal bicar- bonates such as sodium bicarbonate, moreover organic bases, e.g. tertiary amines such as trimethylamine, triethylamine, diisopropylethylamine and N-methylpiperidine (NMP), pyridine, substituted pyridines such as collidine, lutidine and 4-dimethylamino- pyridine, and also bicyclic amines. Particular preference is given to triethylamine, pyridine, triethylamine and potassium carbonate. The bases are generally employed in catalytic amounts; however, they can also be used in equimolar amounts, in excess or, if appropriate, as solvent. The amount of base is typically 0.5 to 5 molar equivalents relative to 1 mole of compounds II.

The starting materials, i.e. compounds Il and compounds III, are generally reacted with one another in equimolar amounts. In terms of yield it may be advantageous to employ an excess of compound Il based on compound III.

Alternatively, compounds IV, wherein R a and n are as defined above and L' is a leaving group such as methylsulfonyl, toluenesulfonyl, hydroxyl or a group as defined for L in formula III, preferably, methylsulfonyl, toluenesulfonyl or halogen such as chloro, bromo and iodo, can be reacted with compounds 111. a, wherein R, A, Y and D are as defined above, to obtain directly compounds I as shown below:

This reaction can be conducted under similar conditions as described for reacting compounds Il with compounds III. Should other leaving groups L' than hydroxy be desired, the hydroxy group can be effectively reacted to form the leaving group in question, e. g. in situ upon treatment with triphenylphosphine and diethylazodicarboxylate or diisopropylazodicarboxylate or a suitable substitute as described in Organ. Lett. 8, 5069-5072, 2006.

Alternatively, this reaction may also be carried out in two consecutive steps as shown below, wherein R a , n, R, A, Y, D and L are defined as above:

Both of the abovementioned reaction steps can be conducted under similar condi- tions as described for reacting compounds Il with compounds III.

Alternatively, this reaction may also be carried as shown below, wherein R a , n, R, A, Y, D and L are defined as above:

Both of the abovementioned reaction steps can be conducted under similar condi- tions as described for reacting compounds Il with compounds III.

Alternatively, compounds I may also be obtained by first reacting compounds VIII, wherein A is as defined above and L 1 and L 2 are leaving goups and have one of the meanings mentioned for L in formula III, preferably being L 1 and L 2 different from each other, with compounds III to obtain compounds VII. a, which can be reacted with compounds Vl. a to obtain compounds I as shown below:

Both of the abovementioned reaction steps can be conducted under similar condi- tions as described for reacting compounds Il with compounds III.

Some compounds Il are known from the literature (cf. Bioorg. Med. Chem. 15(7), 2759-2767, 2007; US 2007129547; WO 07/64993), are commercially available or they can be prepared by reactions known in the art e. g. by treatment with ammonia or ammonium acetate in the presence or absence of a suitable iodide salt, such as NaI, Kl or tetrabutylammonium iodide, in an analogous fashion to the one described in

WO 07/69685. Alternatively, compounds Il may be prepared starting from derivatives IV by treatment with a suitable phthalimide salt, preferably K + or Na + salt, followed by hydrazine, as illustrated in US 2007129547.

Alternatively, compounds II, wherein R is hydrogen, can be prepared by reduction of the corresponding oximes IX.a, nitriles IX.b, or amides IX.c or by reductive amination of the corresponding aldehydes IX. d or ketones IX. e as described below. Appropriate methods therefore are known to those skilled in the art: IX.a: X = CH(=NOH)

IX.g: X = halogen

Methods suitable for the reduction of oximes IX.a, aldehydes IX. d or ketones IX.e to the corresponding compounds Il have been described in the literature e.g. in March, J. "Advanced Organic Chemistry: Reactions, Mechanisms, and Structure" (Wiley & Sons, New York, 4th ed., 1992, pp. 1218-1219).

Methods suitable for the reduction of nitriles IX.b to the corresponding compounds Il have been described in the literature, e.g. in March, J. "Advanced Organic Chemistry: Reactions, Mechanisms, and Structure" (Wiley & Sons, New York, 4th ed., 1992, 918- 919).

Methods suitable for the reduction of amides IX.c to the corresponding compounds Il have been described in the literature, e.g. in March, J. "Advanced Organic Chemistry: Reactions, Mechanisms, and Structure" (Wiley & Sons, New York, 4th ed., 1992, 1212- 1213).

The oximes IX.a can be prepared prepared by reactions known in the art, e. g. from either the respective aldehydes IX. d, ketones IX.e, or the methyl derivatives IX.f in analogy to methods described by Houben-Weyl, vol. 10/4, Thieme, Stuttgart, 1968; vol. 1 1/2, 1957; vol E5, 1985; J. Prakt. Chem./Chem. Ztg. 336(8), 695-697, 1994; Tetrahe- dron Lett. 42(39), 6815-6818, 2001 ; Heterocycles 29(9), 1741-1760, 1989; or Liebigs

Ann. Chem. 737, 39-45, 1970.

The aldehydes IX. d can be synthesized from the corresponding methyl derivatives

IX.f in analogy to J. Org. Chem. 51 (4), 536-537, 1986, or from halogenated derivatives IX.g as shown in Eur. J. Org. Chem. 2003(8), 1576-1588, 2003; Tetrahedron Lett.

40(19), 3719-3722 1999; or Tetrahedron 55(41), 12149-12156, 1999. The ketones IX.e may be prepared by oxidation of the corresponding alcohols using standard agents, e.g. in analogy to the methods described in Synthesis 11 , 881-884; or Heterocycles

71 (4), 91 1-918. The nitriles IX.b can be prepared in analogy to methods described in Heterocycles,

41 (4), 675 (1995); Chem. Pharm. Bull., 21 , 1927 (1973); or J. Chem. Soc, 426 (1942); e.g. from the corresponding halogenated derivatives IX.g by reaction with cyanides such as CuCN, NaCN or KCN or in analogy to the route described in Monatsh. Chem.

87, 526-536, (1956), e.g. from the corresponding halogenated derivatives IX.g by reac- tion with a trialkylamine to afford the trialkylammonium substituted derivatives, followed by reaction with suitable cyanation reagents such as organic or inorganic cyanides, e.g. tetraalkylammonium cyanides, NaCN or KCN. The compounds IX.g are commercially available or can be synthesized according to standard methods.

The amides IX. c can be prepared, e.g. from the corresponding carboxylic acid chlo- rides or anhydrides by reaction with ammonia, e.g. as described in March, J. "Advanced Organic Chemistry: Reactions, Mechanisms, and Structure" (Wiley & Sons,

New York, 3th edition, 1985, 370-371 ).

A further method to obtain compounds Il is shown below, wherein PG is a suitable protection group that may be cleaved under acidic, basic or standard hydrogenation conditions such as defined below:

Protection of amino groups against reaction during one or more synthesis steps is a procedure well known and described in the art. Examples of suitable protection groups are those which are customarily used in organic synthesis, preferably t-butyloxy- carbonyl, benzyloxycarbonyl, allyloxy-carbonyl, diformyl or phthaloyl. Further details on suitable protection groups and their cleavage may be found in Greene T. W., Wits P. G. "Protective groups in organic synthesis" (Wiley & Sons, New York, 1999, 494 et sqq.). The hydrogenation of the nitriles IX.b can be advantegously performed in the presence of suitable catalysts, preferably Raney nickel or palladium-on-carbon, and protection reagents such as di-tert. -butyl dicarbonate, dibenzyl dicarbonate, benzyl chloroformate, to yield the N-protected compounds X. On treating with hydrogen chloride or with hydrogen bromide/glacial acetic acid or with trifluoroacetic acid/water mixtures, the compounds X can be deprotected to yield compounds II, wherein R is hydrogen.

Compounds IV, wherein L' is halogen, preferably Cl or Br, may be synthesized un- der standard halogenation conditions, e. g. by treatment of the corresponding methyl derivative IX.f with halogenation reagents such as Cb, Br2, N-chlorosuccinimide, N-bromosuccinimide or isocyanuric chloride in analogy to methods described in Bioorg. Med. Chem. 15(10), 3315-3320; 2007, Eur. J. Org. Chem. 4, 947-957, 2006; J. Med. Chem. 48(5), 1367-1383, 2005; or J. Org. Chem. 68(11 ), 4179-4188, 2003. Compounds IV, wherein L' is methylsulfonyl or toluenesulfonyl, may be prepared under standard conditions by reacting the corresponding alcohol with methanesulfonic anhydride or trifluoromethanesulfonic anhydride, respectively, in analogy to methods described in J. Org. Chem. 50, 165-2170, 1985; or J. Chem. Soc. Perkin Trans. 1 : Org. Bioorg. Chem. 12, 2887-2894, 1980. The group R may be present in compounds Il or may be introduced at a later stage as shown below by standard conditions in analogy to Coll. Czechoslovak. Chem. Comm. 40(4), 1 193-1198, 1975 or J. Med. Chem. 19(12), 1409-1416, 1991 , upon reaction of compounds I, wherein R is hydrogen, with suitable compounds Xl, wherein the R and the leaving group L are as defined above and which compounds Xl are known in the art:

I + L-R - I

I: R = H Xl

Compounds III and its derivatives III. a and lll.b are known in the art and can be prepared in analogy to methods described in the European patent application 08101694.1. If individual compounds I cannot be obtained by the routes described above, they can be prepared by derivatization of other compounds I.

The N-oxides may be prepared from the compounds I according to conventional oxidation methods, e. g. by treating compounds I with an organic peracid such as metachloroperbenzoic acid (cf. WO 03/64572 or J. Med. Chem. 38(11 ), 1892-903, 1995); or with inorganic oxidizing agents such as hydrogen peroxide (cf. J. Heterocyc. Chem. 18(7), 1305-8, 1981 ) or oxone (cf. J. Am. Chem. Soc. 123(25), 5962-5973, 2001 ). The oxidation may lead to pure mono-N-oxides or to a mixture of different N- oxides, which can be separated by conventional methods such as chromatography. If the synthesis yields mixtures of isomers, a separation is generally not necessarily required since in some cases the individual isomers can be interconverted during workup for use or during application (e. g. under the action of light, acids or bases). Such conversions may also take place after use, e. g. in the treatment of plants in the treated plant, or in the harmful fungus to be controlled.

The term "compounds I" refers to compounds of formula I. Likewise, this terminology applies to all sub-formulae, e. g. "compounds I .A" refers to compounds of formula I .A or "compounds II" refers to compounds of formula II.

In the definitions of the variables given above, collective terms are used which are generally representative for the substituents in question. The term "C n -Cm" indicates the number of carbon atoms possible in each case in the substituent or substituent moiety in question.

The term "halogen" refers to fluorine, chlorine, bromine and iodine. The term "Ci-Cβ-alkyl" refers to a straight-chained or branched saturated hydrocarbon group having 1 to 6 carbon atoms, e.g. methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, 1 ,1-dimethylethyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, 1 ,1-dimethylpropyl, 1 ,2-dimethylprop- yl, hexyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1 ,1 -dimethyl- butyl, 1 ,2-dimethylbutyl, 1 ,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-di- methylbutyl, 1-ethylbutyl, 2-ethylbutyl, 1 ,1 ,2-trimethylpropyl, 1 ,2,2-trimethylpropyl, 1-ethyl-1-methylpropyl and 1-ethyl-2-methylpropyl. Likewise, the term "Ci-C4-alkyl" refers to a straight-chained or branched alkyl group having 1 to 4 carbon atoms. The term "Ci-C4-haloalkyl" refers to a straight-chained or branched alkyl group having 1 to 4 carbon atoms, wherein some or all of the hydrogen atoms in these groups may be replaced by halogen atoms, e. g. chloromethyl, bromomethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, di- chlorofluoromethyl, chlorodifluoromethyl, 1-chloroethyl, 1-bromoethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro- 2,2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2-trichloroethyl and pentafluoroethyl, 2-fluoropropyl, 3-fluoropropyl, 2,2-difluoropropyl, 2,3-difluoropropyl, 2-chloropropyl, 3-chloropropyl, 2,3-dichloropropyl, 2-bromopropyl, 3-bromopropyl, 3,3,3-trifluoropropyl, 3,3,3-trichloropropyl, CH 2 -C 2 F 5 , CF 2 -C 2 F 5 , CF(CFs) 2 , 1-(fluoromethyl)-2-fluoroethyl, 1-(chloromethyl)-2-chloroethyl, 1-(bromomethyl)-2-bromoethyl, 4-fluorobutyl, 4-chloro- butyl, 4-bromobutyl or nonafluorobutyl. Likewise, the term "Ci-Cβ-haloalkyl" refers to a straight-chained or branched alkyl group having 1 to 6 carbon atoms, wherein some or all of the hydrogen atoms in these groups may be replaced by halogen atoms.

The term "Ci-Cβ-alkoxy" refers to a straight-chain or branched alkyl group having 1 to 4 carbon atoms which is bonded via an oxygen, at any position in the alkyl group, e.g. OCH 3 , OCH 2 CH 3 , O(CH 2 ) 2 CH 3 , 1-methylethoxy, O(CH 2 ) 3 CH 3 , 1-methyhpropoxy, 2-methylpropoxy or 1 ,1-dimethylethoxy, 0(CH 2 ^CH 3 or O(CH 2 ) 5 CH 3 . Likewise, the term "Ci-C4-alkoxy" refers to a straight-chain or branched alkyl group having 1 to 4 carbon atoms which is bonded via an oxygen, at any position in the alkyl group. The term "Ci-C4-haloalkoxy" refers to a Ci-C4-alkoxy group, wherein some or all of the hydrogen atoms may be replaced by halogen atoms as mentioned above, e.g. OCH 2 F, OCHF 2 , OCF 3 , OCH 2 CI, OCHCI 2 , OCCI 3 , chlorofluoromethoxy, dichlorofluoro- methoxy, chlorodifluoromethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2-bromoethoxy, 2-iodoethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy, 2-chloro-2-fluoroethoxy, 2-chloro-2,2-difluoroethoxy, 2,2-dichloro-2-fluoroethoxy, 2,2,2-trichloro->ethoxy, OC 2 F 5 , 2-fluoropropoxy, 3-fluoropropoxy, 2,2-difluoropropoxy, 2,3-difluoro->propoxy, 2-chloro- propoxy, 3-chloropropoxy, 2,3-dichloropropoxy, 2-bromo->propoxy, 3-bromopropoxy, 3,3,3-trifluoropropoxy, 3,3,3-trichloropropoxy, OCH 2 -C 2 F 5 , OCF 2 -C 2 F 5 , 1-difluoromethyl- 2-fluoroethoxy, 1 -dichloromethyl -2-chloroethoxy, 1-dibromomethyl-2-bromo- i ethoxy, 4-fluorobutoxy, 4-chlorobutoxy, 4-bromobutoxy or nonafluorobutoxy. Likewise, the term "Ci-Cβ-haloalkoxy" refers to a Ci-C6-alkoxy group, wherein some or all of the hydrogen atoms may be replaced by halogen atoms.

The term refers to alkyl having 1 to 4 carbon atoms, wherein one hydrogen atom of the alkyl radical is replaced by a Ci-C4-alkoxy group. Likewise, the term "Ci-Ce-alkoxy-Ci-Cβ-alkyl" refers to alkyl having 1 to 6 carbon atoms, wherein one hydrogen atom of the alkyl radical is replaced by a Ci-Cβ-alkoxy group. The term "Ci-C4-haloalkoxy-Ci-C4-alkyl" refers to alkyl having 1 to 4 carbon atoms, wherein one hydrogen atom of the alkyl radical is replaced by a Ci-C4-haloalkoxy group. Likewise, the term "Ci-Ce-haloalkoxy-Ci-Cβ-alkyl" refers to alkyl having 1 to 6 carbon atoms, wherein one hydrogen atom of the alkyl radical is replaced by a Ci-Cβ-alkoxy group. The term "Ci-Ce-alkoxy-Ci-Cβ-alkoxy" refers to an Ci-Ce-alkoxy-Ci-Cβ-alkyl group, which is bonded via an oxygen atom to the remainder of the molecule.

The term "Ci-C4-alkylthio" as used herein refers to straight-chain or branched alkyl groups having 1 to 4 carbon atoms bonded via a sulfur atom, at any position in the alkyl group, e. g. methylthio, ethylthio, propylthio, isopropylthio, and n-butylthio. Likewise, the term "d-Cε-alkylthio" as used herein refers to straight-chain or branched alkyl groups having 1 to 6 carbon atoms bonded via a sulfur atom. Accordingly, the terms "Ci-C4-haloalkylthio" and "C-i-Cε-haloalkylthio" refer to straight-chain or branched haloalkyl groups having 1 to 4 or 1 to 6 carbon atoms bonded through a sulfur atom, at any position in the haloalkyl group. The terms "Ci-C4-alkylsulfinyl" and "Ci-Cβ-alkylsulfinyl", respectively refer to straight-chain or branched alkyl groups having 1 to 4 or 1 to 6 carbon atoms, respectively, bonded through a -S(=O)- moiety, at any position in the alkyl group, e.g. methyl- sulfinyl and ethylsulfinyl, and the like. Accordingly, the terms "Ci-C4-haloalkylsulfinyl" and "Ci-Cβ-haloalkylsulfinyl", respectively, refer to straight-chain or branched haloalkyl groups having 1 to 4 and 1 to 6 carbon atoms, respectively, bonded through a -S(=O)- moiety, at any position in the haloalkyl group.

The terms "Ci-C4-alkylsulfonyl" and "Ci-Cβ-alkylsulfonyl", respectively, refer to straight-chain or branched alkyl groups having 1 to 4 and 1 to 6 carbon atoms, respectively, bonded through a -S(=O)2- moiety, at any position in the alkyl group, e.g. methyl- sulfonyl. Accordingly, the terms "Ci-C4-haloalkylsulfonyl" and "Ci-C6-haloalkylsulfonyl", respectively, refer to straight-chain or branched haloalkyl groups having 1 to 4 and 1 to 6 carbon atoms, respectively, bonded through a -S(=O)2- moiety, at any position in the haloalkyl group.

The term "Ci-C4-alkylamino" refers to an amino radical carrying one Ci-C4-alkyl group as substituent, e.g. methylamino, ethylamino, propylamino, 1-methylethylamino, butylamino, 1-methylpropylamino, 2-methylpropylamino, 1 ,1-dimethylethylamino and the like. Likewise, the term "Ci-Cε-alkylamino" refers to an amino radical carrying one d-Cβ-alkyl group as substituent.

The term "di(Ci-C4-alkyl)amino" refers to an amino radical carrying two identical or different Ci-C4-alkyl groups as substituents, e. g. dimethylamino, diethylamino, di-n- propylamino, diisopropylamino, N-ethyl-N-methylamino, N-(n-propyl)-N-methylamino, N-(isopropyl)-N methylamino, N-(n-butyl)-N-methylamino, N-(n-pentyl)-N-methylamino, N-(2-butyl)-N methylamino, N-(isobutyl)-N-methylamino, and the like. Likewise, the term "di(Ci-C6-alkyl)amino" refers to an amino radical carrying two identical or different Ci-Cβ-alkyl groups as substituents.

Accordingly, the terms "d-Cβ-haloalkylamino" and "di(Ci-C4-haloalkyl)amino", respectively, refer to amino radicals carrying one and two identical or different d-Cβ-alkyl groups as substituents, respectively.

The term "Ci-C4-alkylcarbonyl" refers to a d-Cβ-alkyl radical which is attached via a carbonyl group. The term "(Ci-C6-alkoxy)carbonyl" refers to a d-Cβ-alkoxy radical which is attached via a carbonyl group. Accordingly, the terms "d-Cβ-haloalkylcar- bonyl" and "d-Cβ-haloalkoxycarbonyl", respectively, refer to a d-Cβ-alkyl radical and a d-Cβ-alkoxy radical, respectively, which are attached via a carbonyl group.

The term "Ci-Cβ-alkylaminocarbonyl" refers to a d-Cβ-alkylamino radical which is attached via a carbonyl group. Likewise, the term "di(Ci-C6-alkyl)aminocarbonyl" refers to a di(Ci-C6)alkylamino radical which is attached via a carbonyl group.

The term "phenoxy" and refers to a phenyl radical which is attached via an oxygen atom. Likewise, the term "phenoxy-d-Cβ-alkyl" and refers to a phenoxy radical which is attached via a d-Cβ-alkyl group.

The term "C2-d-alkenyl" refers to a straight-chain or branched unsaturated hydrocarbon radical having 2 to 4 carbon atoms and a double bond in any position, e.g. ethenyl, 1-propenyl, 2-propenyl (allyl), 1-methylethenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl. Likewise, the term "C2-C6-alkenyl" refers to a straight-chain or branched unsaturated hydrocarbon radical having 2 to 6 carbon atoms and a double bond in any position.

The term "C2-d-alkynyl" refers to a straight-chain or branched unsaturated hydrocarbon radical having 2 to 4 carbon atoms and containing at least one triple bond, such as ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-methyl-2-propynyl. Likewise, the term "C2-C6-alkynyl" refers to a straight-chain or branched unsaturated hydrocarbon radical having 2 to 6 carbon atoms and at least one triple bond.

The term "Cs-do-cycloalkyl" refers to monocyclic, bicyclic, bridged and diamandoid saturated hydrocarbon radicals having 3 to 10 carbon ring members, such as cyclopro- pyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, norbornyl or adamantyl.

Likewise, the term "Cs-do-cycloalkenyl" refers to monocyclic, bicyclic and bridged unsaturated hydrocarbon radicals having 3 to 10 carbon ring members and a double bond in any position, such as cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl, cyclononenyl, cyclodecenyl or norbornenyl.

The term "Ci-Cβ-alkyl-Cs-Cs-cycloalkyl" refers to a cycloalkyl radical having 3 to 8 carbon atoms (as defined above), wherein one hydrogen atom of the cycloalkyl radical is replaced by a d-Cβ-alkyl group.

The term "5-, 6- or 7-membered carbocycle" is to be understood as meaning both saturated or partially unsaturated carbocycles having 5, 6 or 7 ring members as well as phenyl. Examples for non-aromatic rings include cyclopentyl, cyclopentenyl, cyclopen- tadienyl, cyclohexyl, cyclohexenyl, cyclohexadienyl, cycloheptyl, cycloheptenyl, cyclo- heptadienyl, and the like. The term "5-, 6-, or 7-membered heterocycle" wherein the ring member atoms of the heterocycle include besides carbon atoms one, two, three or four heteroatoms selected from the group of N, O and S, is to be understood as meaning both saturated and partially unsaturated as well as aromatic heterocycles having 5, 6 or 7 ring atoms. Examples include: saturated and partially unsaturated 5-, 6-, or 7-membered heterocycle wherein the ring member atoms of the heterocycle include besides carbon atoms 1 , 2 or 3 heteroatoms selected from the group of N, O and S, and which is saturated or partially unsaturated, e. g. pyrrolidin-2-yl, pyrrol id i n-3-yl , tetrahydrofuran-2-yl, tet- rahydrofuran-3-yl, tetrahydrothien-2-yl, tetrahydrothien-3-yl, 1 ,3-dioxolan-4-yl, isoxazolidin-3-yl, isoxazolidin-4-yl, isoxazolidin-5-yl, isothiazolidin-3-yl, isothia- zolidin-4-yl, isothiazolidin-5-yl, pyrazolidin-3-yl, pyrazolidin-4-yl, pyrazolidin-5-yl, oxazolidin-2-yl, oxazolidin-4-yl, oxazolidin-5-yl, thiazolidin-2-yl, thiazolidin-4-yl, thiazolidin-5-yl, imidazolidin-2-yl, imidazolidin-4-yl, 2-pyrrolin-2-yl, 2-pyrrolin-3-yl, 3-pyrrolin-2-yl, 3-pyrrolin-3-yl, piperidin-2-yl, piperidin-3-yl, piperidin-4-yl, 1 ,3-di- oxan-5-yl, tetrahydropyran-2-yl, tetrahydropyran-4-yl, tetrahydrothien-2-yl, hexa- hydropyridazin-3-yl, hexahydropyridazin-4-yl, hexahydropyrimidin-2-yl, hexahy- dropyrimidin-4-yl, 5-hexahydropyrimidinyl and piperazin-2-yl; 5-membered heteroaryl (heteroaromatic radical), wherein the ring member atoms of the heteroaryl include besides carbon atoms 1 , 2 or 3 heteroatoms selected from the group of N, O and S, e. g. pyrrol-1-yl, pyrrol-2-yl, pyrrol-3-yl, thien-2-yl, thien-3-yl, furan-2-yl, furan-3-yl, pyrazol-1-yl, pyrazol-3-yl, pyrazol-4-yl, pyrazol-5- yl, imidazol-1-yl, imidazol-2-yl, imidazol-4-yl, imidazol-5-yl, oxazol-2-yl, oxazol-4- yl, oxazol-5-yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl, thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, isothiazol-3-yl, isothiazol-4-yl, isothiazol-5-yl, 1 ,2,4-triazolyl-1-yl,

1 ,2,4-triazol-3-yl 1 ,2,4-triazol-5-yl, 1 ,2,4-oxadiazol-3-yl, 1 ,2,4-oxadiazol-5-yl, 1 ,2,4-thiadiazol-3-yl and 1 ,2,4-thiadiazol-5-yl;

6-membered heteroaryl (heteroaromatic radical), wherein the ring member atoms of the heteroaryl include besides carbon atoms 1 , 2 or 3 nitrogen atoms, e. g. pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyridazin-3-yl, pyridazin-4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrimidin-5-yl, pyrazin-2-yl and 1 ,3,5-triazin-2-yl. As used herein, the term "Cs-Cs-cycloalkylene" refers to a divalent radical derived from a Cs-Cs-cycloalkyl group that has two points of attachment. Likewise, the term "C3-C8-cycloalkenylene" refers to a divalent radical derived from a Cs-Cs-cycloalkenyl group that has two points of attachment.

The term "Ci-Cβ-alkanediyl" refers to a divalent, branched or straight-chain saturated hydrocarbon radical having 1 to 6 carbon atoms, derived from a d-Cε-alkyl group that has two points of attachment. Likewise, the terms "Ci-Cβ-haloalkanediyl", "C 2 -C 6 -alkenediyl", "C 2 -C 6 -haloalkenediyl", "C 2 -C 6 -alkynediyl" and "C 2 -C 6 -haloalkyne- diyl" refer to divalent branched or straight-chain hydrocarbon radicals having 1 to 6 carbon atoms, derived from d-Cε-haloalkyl, C 2 -C6-alkenyl, C 2 -C6-haloalkenyl, C 2 -C6-alk- ynyl and C 2 -C6-haloalkynyl, respectively that have two points of attachment.

The term "two radicals R a that are bound to adjacent ring member atoms of the pyridine ring may form together with said ring member atoms a fused 5-, 6- or 7-mem- bered saturated, partially unsaturated or aromatic cycle" refers to a condensed bicyclic ring system, wherein the pyridine ring carries a fused-on 5-, 6- or 7-membered carbo- cyclic or heterocyclic ring. The term "two radicals R b that are bound to adjacent ring member atoms of the group A may form together with said ring member atoms a fused 5-, 6- or 7-membered saturated, partially unsaturated or aromatic cycle" refers to a condensed bicyclic ring system, wherein the Cs-Cs-cycloalkylene and Cs-Cs-cycloalkenylene, respectively carry a fused-on 5-, 6- or 7-membered carbocyclic or heterocyclic ring. The term "two radicals R c that are bound to adjacent ring member atoms of the group D may form together with said ring member atoms a fused 5-, 6- or 7-membered saturated, partially unsaturated or aromatic aromatic cycle, which may be a carbocycle or heterocycle" refers to a condensed bicyclic ring system, wherein the Cs-Cs-cyclo- alkyl, Cs-Cs-cycloalkenyl, phenyl and 5- or 6-membered heteroaryl, respectively carry a fused-on 5-, 6- or 7-membered carbocyclic or heterocyclic ring.

Agriculturally acceptable salts of compounds I encompass especially the salts of those cations or the acid addition salts of those acids whose cations and anions, respectively, have no adverse effect on the fungicidal action of the compounds I. Suitable cations are thus in particular the ions of the alkali metals, preferably sodium and potas- sium, of the alkaline earth metals, preferably calcium, magnesium and barium, of the transition metals, preferably manganese, copper, zinc and iron, and also the ammonium ion which, if desired, may carry one to four Ci-C4-alkyl substituents and/or one phenyl or benzyl substituent, preferably diisopropylammonium, tetramethylammonium, tetrabutylammonium, trimethylbenzylammonium, furthermore phosphonium ions, sulfo- nium ions, preferably tri(Ci-C4-alkyl)sulfonium, and sulfoxonium ions, preferably tri(Ci-C4-alkyl)sulfoxonium. Anions of useful acid addition salts are primarily chloride, bromide, fluoride, hydrogensulfate, sulfate, dihydrogenphosphate, hydrogenphosphate, phosphate, nitrate, bicarbonate, carbonate, hexafluorosilicate, hexafluorophosphate, benzoate, and the anions of Ci-C4-alkanoic acids, preferably formate, acetate, propi- onate and butyrate. They can be formed by reacting a compound of formula I with an acid of the corresponding anion, preferably of hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid or nitric acid.

The compounds of formula I can be present in atropisomers arising from restricted rotation about a single bond of asymmetric groups. They also form part of the subject matter of the present invention.

Depending on the substitution pattern, the compounds of formula I and their N-oxides may have one or more centers of chirality, in which case they are present as pure enantiomers or pure diastereomers or as enantiomer or diastereomer mixtures. Both, the pure enantiomers or diastereomers and their mixtures are subject matter of the present invention.

In respect of the variables, the embodiments of the intermediates correspond to the embodiments of the compounds I. Preference is given to those compounds I and where applicable also to compounds of all sub-formulae provided herein, e. g. formulae 1.1 and 1.2 or formulae I.A to I. K and to the intermediates such as compounds II, III, IV and IX. a to IX.h, wherein the sub- stituents and variables (n, R, A, Y, D, R a , R b , R c , R d , R e , R π , R', R" and R'") have inde- pendently of each other or more preferably in combination the following meanings:

One embodiment of the invention relates to compounds I, wherein n is 1 , 2, 3 or 4, more preferably n is 1 or 2. Another embodiment relates to compounds I, wherein n is 2 and R a is position 2 and 3 of the pyridine ring. A further embodiment relates to com- pounds I, wherein n is 2 and R a is position 2 and 6 of the pyridine ring. A further embodiment relates to compounds I, wherein n is 2 and R a is in position 3 and 5 of the pyridine ring. A further embodiment relates to compounds I, wherein n is 3. A further embodiment relates to compounds I, wherein n is 1. A further embodiment relates to compounds I, wherein n is 0. A further embodiment relates to compounds I, wherein two radicals R a that are bound to adjacent ring member atoms of the pyridine ring do not form together with said ring member atoms any fused cycle.

In one embodiment of the invention, R a is halogen, CN, NH 2 , d-Cε-alkyl, C-i-Cε-haloalkyl, Ci-Cβ-alkoxy, C-i-Cβ-haloalkoxy, d-Cβ-alkylthio, d-Cβ-haloalkylthio, Ci-Cε-alkylamino, Ci-Cβ-haloalkylamino, di(Ci-C6-alkyl)amino, di(Ci-C6-haloalkyl)- amino, d-Cβ-alkylcarbonyl, Ci-Cβ-haloalkylcarbonyl, Ci-Cβ-alkoxycarbonyl, Ci-Cβ-halo- alkoxycarbonyl, Ci-C4-alkoxy-Ci-C4-alkyl, Ci-Cβ-alkylaminocarbonyl, di(Ci-C6-alkyl)- aminocarbonyl.

In another embodiment, R a is halogen, CN, Ci-C4-alkyl, Ci-C4-haloalkyl, Ci-C4-alkoxy, Ci-C4-haloalkoxy, Ci-C4-alkoxy-Ci-C4-alkyl, C 3 -C8-cycloalkyl or Ci-C4-alkyl-C 3 -C 8 -cycloalkyl.

In a further embodiment, R a is halogen, Ci-C4-alkyl, Ci-C4-haloalkyl, Ci-C4-alkoxy, Ci-C4-haloalkoxy, Ci-C4-alkylthio or di(Ci-C4-alkyl)amino.

In a further embodiment, R a is Cl, CN, CH 3 , CF 3 , OCH 3 , OCF 3 , N(CHs) 2 , Ci-C 6 -alkyl- carbonyl and preferably selected from C(=O)CH 3 , C(=O)CH(CH 3 ) 2 and C(=O)C(CH 3 ) 3 , Ci-haloalkylcarbonyl, in particular C(=O)CF 3 , Ci-C4-alkoxycarbonyl and preferably selected from C(=O)OCH 3 , C(=O)OCH(CH 3 ) 2 and C(=O)OC(CH 3 ) 3 , Ci-haloalkoxycar- bonyl, in particular C(=O)OCF 3 , Ci-Cβ-alkylaminocarbonyl and preferably selected from C(=O)NHCH 3 , C(=O)NHCH(CH 3 ) 2 and C(=O)NHC(CH 3 ) 3 , di(Ci-C 6 -alkyl)aminocarbonyl and preferably selected from C(=O)N(CH 3 ) 2 , C(=O)N[CH(CH 3 ) 2 ] 2 and C(=O)N[C(CH 3 ) 3 ] 2 .

In a further embodiment, R a is CH 2 CH 3 , CH 2 (CHs) 2 , CF 3 , OCH 3 , OCH 2 CH 3 , isopro- poxy, OCF 3 , OCHF 2 , NHCH 3 , N(CHs) 2 , NHCH 2 CH 3 or NHCH 2 (CHs) 2 .

In a further embodiment, R a is CH 2 CH 3 , CH 2 (CHs) 2 , CF 3 , OCH 2 CH 3 , isopropoxy, OCF 3 , OCHF 2 , N(CHs) 2 , NHCH 2 CH 3 or NHCH 2 (CHs) 2 .

In a further embodiment, R a is halogen and preferably selected from F and Cl and in particular, R a is Cl. In a further embodiment, R a is CN. In a further embodiment, R a is d-Cβ-alkyl and preferably selected from methyl, ethyl, n-propyl, i-propyl and t-butyl. In a further embodiment, R a is d-Cε-haloalkyl. More preferably, R a is Ci-haloalkyl in particular, R a is trifluormethyl. In a further embodiment, R a is Ci-C4-alkoxy and preferably selected from methoxy, ethoxy, n-propyloxy and i-propyloxy. In a further embodiment, R a is Ci-C6-alkoxy-Ci-C6-alkyl and preferably selected from methoxymethyl, ethoxy- methyl, methoxyethyl and ethoxyethyl. In a further embodiment, R a is Cs-Cs-cycloalkyl and preferably selected from cyclopropyl, cylopentyl and cyclohexyl, and in particular, R a is cyclopropyl. In a further embodiment, R a is Ci-Cβ-alkyl-Cs-Cs-cycloalkyl and preferably selected from cylopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclo- hexylmethyl, cycloheptylmethyl and cyclooctylmethyl. In a further embodiment, two radicals R a that are bound to adjacent ring member atoms of the pyridine ring form together with said ring member atoms a fused 5-, 6- or 7-membered saturated, partially unsaturated or aromatic aromatic cycle, which may be a carbocycle or heterocycle, wherein the ring member atoms of the fused heterocycle include besides carbon atoms one, two, three or four heteroatoms selected from the group of N, O and S, and wherein the fused carbocycle or heterocycle is unsubstituted and carries 1 , 2, 3 or 4 identical or different groups as defined for R a . In one embodiment, the fused cycle is preferably phenyl. In a another embodiment, the fused cycle is preferably a saturated carbocycle and in particular cyclohexyl. In a further embodiment, the fused cycle is preferably a partially unsaturated carbocycle and in particular cyclo- hexenyl.

Preference is given to compounds I, wherein two radicals R a that are bound to adjacent ring member atoms of the pyridine ring form together with said ring member atoms a fused optionally substituted 6-membered heteroaryl. In one embodiment, the fused heteroaryl is pyridyl. In another embodiment, the fused heteroaryl is pyridazinyl. In a further embodiment, the fused heteroaryl is pyrimidinyl. In a further embodiment, the fused heteroaryl is pyrazinyl.

Preference is given to compounds I, wherein two radicals R a that are bound to adjacent ring member atoms of the pyridine ring form together with said ring member atoms a fused optionally substituted 5-membered heteroaryl. In one embodiment, the fused heteroaryl is furanyl. In another embodiment, the fused heteroaryl is thienyl. In a further embodiment, the fused heteroaryl is pyrrolyl. In a further embodiment, the fused heteroaryl is pyrazolyl. In a further embodiment, the fused heteroaryl is isoxazolyl. In a further embodiment, the fused heteroaryl is isothiazolyl. In a further embodiment, the fused heteraryl is imidazolyl. In a further embodiment, the fused heteroaryl is oxazolyl. In a further embodiment, the fused heteroaryl is thiazolyl.

Specific embodiments relate to compounds I, wherein R a1 , R a2 , R a3 and R a4 are each independently hydrogen or have one of the definitions specified for R a and wherein the pyridinyl group carries one of the following combinations of the radicals R a1 , R a2 and R a3 as defined in Table P, which compounds are of formula 1.1

One embodiment relates to compounds I, wherein R is hydrogen, Ci-Cβ-alkyl, C-i-Cβ-haloalkyl, C-i-Cβ-alkylcarbonyl or C-i-Cβ-haloalkylcarbonyl, preferably hydrogen or d-Ce-alkyl.

Another embodiment relates to compounds I, wherein R is hydrogen, Ci-C4-alkyl, Ci-C2-haloalkoxy, di(Ci-C2-alkyl)amino, allyl or propargyl.

A further embodiment relates to compounds I, wherein R is hydrogen, Ci-C4-alkyl, -CH=CH 2 , -CH 2 -CH=CH 2 or -CH 2 -C=CH.

A further embodiment relates to compounds I, wherein R is Ci-C4-alkyl and preferably selected from methyl, ethyl, n-propyl and i-propyl, and in particular, R is methyl.

A further embodiment relates to compounds I, wherein R is hydrogen and wherein R a1 , R a2 and R a3 are each independently hydrogen or have one of the definitions specified for R a , especially thos ds are of formula 1.2

One embodiment relates to compounds I, wherein A is C 3 -C8-cycloalkylene and preferably selected from 1 ,2-cyclohexylene, 1 ,3-cyclohexylene and 1 ,4-cyclohexylene, and wherein the aforementioned radicals are unsubstituted or carry 1 , 2, 3 or 4 identical or different substituents R b .

Another embodiment relates to compounds I, wherein A is cyclohexylene or cyclopentylene.

A further embodiment relates to compounds I, wherein A is cyclopropylene.

Another embodiment relates to compounds I, wherein A is C 3 -C8-cycloalkenylene and selected from cyclopentenylene, cyclohexenylene, cycloheptenylene and cyclooc- tenylene and in particular selected from 1 ,2-cyclohex-1-enylene, 1 ,3-cyclohex-1-en- ylene, 1 ,4-cyclohex-1-enylene, 1 ,3-cyclohex-2-enylene and 1 ,4-cyclohex-2-enylene, and wherein the aforementioned radicals are unsubstituted or carry 1 , 2, 3 or 4 identical or different substituents R b .

A further embodiment relates to compounds I, wherein A is C-i-Cβ-alkanediyl, Ci-Cβ-haloalkanediyl, C 2 -C6-alkenediyl, C 2 -C6-haloalkenediyl, C 2 -C6-alkynediyl or C 2 -C6-haloalkynediyl, preferably selected from Ci-C4-alkanediyl, Ci-C4-haloalkanediyl, C 2 -C4-alkenediyl and C 2 -C4-haloalkenediyl, more preferably selected from Ci-C 2 -alk- anediyl, in particular methylene, and wherein the aforementioned radicals are unsub- stituted or carry 1 , 2, 3 or 4 identical or different substituents R b .

A further embodiment relates to compounds I, wherein A is d-Cβ-alkanediyl. Particularly preferred embodiments of the invention relate to compounds I, in which A is one of the following radicals A-1 to A-8:

wherein # indicates the bond to the sulfur atom of the sufonamide group; and * indicates the bond to Y.

One embodiment of the invention relates to compounds I, wherein the group A car- ries 1 , 2 or 3 radicals R b , more preferably 1 or 2 radicals R b . In another embodiment, the group A is unsubstituted or carries 1 radical R b . In a further embodiment, the group A is unsubstituted. In a further embodiment, the group A carries 1 radical R b . In a further embodiment, the group A carries 2 radicals R b . In a further embodiment, the group A carries 3 radicals R b . If R b is present, R b is preferably halogen, CN, Ci-C4-alkyl, Ci-C4-haloalkyl,

Ci-C4-alkoxy, Ci-C4-haloalkoxy, C2-C4-alkenyl, C2-C4-haloalkenyl, C2-C4-alkynyl, C2-C4-haloalkynyl, Ci-C4-alkylcarbonyl, Ci-C4-alkoxycarbonyl, Ci-C4-alkylamino, di(Ci-C4-alkyl)amino, Ci-C4-alkylaminocarbonyl or di(Ci-C4-alkyl)aminocarbonyl. More preferably, R b is halogen, CN, Ci-C4-alkyl, Ci-C4-haloalkyl, Ci-C4-alkoxy or Ci-C4-halo- alkoxy.

In a further embodiment, R b is halogen and preferably selected from fluorine and chlorine, and in particular, chlorine. In a further embodiment, R b is CN. In a further embodiment, R b is Ci-C4-alkyl and preferably selected from methyl, ethyl, n-propyl and i-propyl, and in particular, methyl. In a further embodiment, R b is Ci-C4-haloalkyl. More preferably, R b is C-i-haloalkyl and selected from fluoromethyl, difluoromethyl, trifluoro- methyl, chloromethyl, dichloromethyl and trichloromethyl, and in particular, trifluoro- methyl. In a further embodiment, R b is Ci-C4-alkoxy and preferably selected from methoxy and ethoxy. In a further embodiment, R b is Ci-C4-haloalkoxy.

In a further embodiment, two radicals R b that are bound to adjacent ring member atoms of the group A do not form together with said ring member atoms any fused cycle.

A further embodiment relates to compounds I, wherein two radicals R b that are bound to adjacent ring member atoms of a cyclic group A form together with said ring member atoms a fused cycle being a fused 5-, 6- or 7-membered saturated, partially unsaturated or aromatic carbocycle or heterocycle, wherein the ring member atoms of the fused heterocycle include besides carbon atoms 1 , 2, 3 or 4 heteroatoms selected from the group of N, O and S, and wherein the fused cycle is unsubstituted and carries 1 , 2, 3 or 4 identical or different groups as defined for R b . In one embodiment, the fused cycle is preferably phenyl. In another embodiment, the fused cycle is preferably a saturated carbocycle and in particular cyclohexyl. In a further embodiment, the fused cycle is preferably a partially unsaturated carbocycle and in particular cyclohexenyl.

One embodiment relates to compounds I, wherein Y is a direct bond, -O-, -S- or -NH-. Another embodiment relates to compounds I, wherein Y is -S- or -O-. A further embodiment relates to compounds I, wherein R is hydrogen and Y is -O- and R a1 , R a2 , R a3 and R a4 are each independently hydrogen or have one of the definitions specified for R a , which are

A further embodiment relates to compounds I, wherein R is hydrogen and Y is a direct bond and R a1 , R a2 , R a3 and R a4 are each independently hydrogen or have one of the definitions specified for R a , which are represented by formula I. B:

A further embodiment relates to compounds I, wherein Y is -N(R π )-, wherein R π is hydrogen or Ci-C4-alkyl. If R π is present, in one embodiment of the invention, R π is C1-C4- alkyl, and preferably selected from methyl, ethyl, n-propyl and i-propyl, and in particular, R π is methyl. One embodiment of the invention relates to compounds I, wherein D is

C3-Cio-cycloalkyl and preferably selected from cyclopropyl, cyclopentyl, cyclohexyl, norbornyl and adamantyl, and in particular cyclohexyl, and wherein the aforementioned radicals are unsubstituted or carry 1 , 2, 3, 4 or 5 identical or different substituents R c . Another embodiment relates to compounds I, wherein D is C3-Cio-cycloalkenyl and preferably selected from cyclopropenyl, cyclopentenyl, cyclohexenyl and norbornenyl, and in particular cyclohexenyl, and wherein the aforementioned radicals are unsubstituted or carry 1 , 2, 3, 4 or 5 identical or different substituents R c .

A further embodiment relates to compounds I, wherein D is phenyl, which is unsubstituted or carries 1 , 2, 3, 4 or 5 identical or different substituents R c . A further embodiment relates to compounds I, wherein D is a 6-membered het- eroaryl, wherein the ring member atoms of the heteroaryl include besides carbon atoms 1 , 2 or 3 nitrogen atoms, and wherein the 6-membered heteroaryl is unsubstituted or carries 1 , 2, 3 or 4 identical or different groups R c .

If D is a 6-membered heteroaryl, in one embodiment, D carries at least one nitrogen as ring member atom. In one embodiment, D is a pyridyl radical that is preferably selected from pyridin-2-yl and pyridin-3-yl, and wherein the aforementioned pyridyl radicals are unsubstituted or carry 1 , 2, 3 or 4 identical or different substituents R c . In an- other embodiment, D is a pyridin-2-yl radical that is substituted by 1 or 2 identical or different substituents R c .

In a further embodiment, D is pyridin-3-yl, which is unsubstituted or carries 1 or 2 radicals R c . In a further embodiment, D is a pyridazinyl radical. More preferably, D is pyridazin-

3-yl, which is unsubstituted or carries 1 or 2 radicals R c .

In a further embodiment, D is a pyrimidinyl radical and preferably selected from pyrimidin-2-yl, pyrimidin-4-yl and pyrimidin-6-yl, and wherein the aforementioned pyrimidinyl radicals are unsubstituted or carry 1 , 2 or 3 identical or different substituents R c . In a further embodiment, D is a pyrazinyl radical that is unsubstituted or carries 1 , 2 or 3 identical or different substituents R c .

Another embodiment of the invention relates to compounds I, wherein D is a 5-membered heteroaryl, wherein the ring member atoms of the heteroaryl include besides carbon atoms 1 , 2, 3 or 4 heteroatoms selected from the group of N, O and S, and wherein the heteroaryl is unsubstituted or carries 1 , 2, 3 or 4 identical or different groups R c .

If D is a 5-membered heteroaryl, D carries one heteroatom as ring member atom. In one embodiment, D is a furanyl radical selected from furan-2-yl and furan-3-yl, wherein the aforementioned furanyl radicals are unsubstituted or carry 1 , 2 or 3 identical or dif- ferent substituents R c . In another embodiment, D is a thienyl radical selected from thien-2-yl and thien-3-yl, wherein the aforementioned thienyl radicals are unsubstituted or carry 1 , 2 or 3 identical or different substituents R c .

If D is a 5-membered heteroaryl, D carries two heteroatoms as ring member atoms. In a more prefered embodiment, D carries at least one nitrogen as ring member atom. In another embodiment, D is a pyrazolyl radical that is unsubstituted or carries 1 , 2 or 3 identical or different substituents R c . In a further embodiment, D is an imidazolyl radical that is unsubstituted or carries 1 , 2 or 3 identical or different substituents R c .

Particularly preferred embodiments of the invention relate to compounds I, in which D is one of the following radicals D-1 to D-1 1 :

in which * indicates the bond to Y and R c1 , R c2 , R c3 , R c4 and R c5 are each independently hydrogen or have one of the definitions specified for R c , especially those being preferred.

One embodiment of the invention relates to compounds I, wherein D carries 1 , 2 or

3 radicals R c , preferably D carries 1 or 2 radicals R c , in particular D carries 1 radical R c . A further embodiment relates to compounds I, wherein D carries 2 radicals R c . A further embodiment relates to compounds I, wherein D carries 3 radicals R c .

Preferably, R c is halogen, CN, d-Ce-alkyl, d-Ce-haloalkyl, d-Ce-alkoxy, d-Cβ-haloalkoxy, d-C 6 -alkoxy-d-C 6 -alkyl, C(=O)R\ C(=NOR")R'", C 3 -Cβ-cycloalkyl, Ci-C6-alkyl-C3-C8-cycloalkyl, phenyl, phenoxy, phenoxy-d-d-alkyl or a 5- or 6-mem- bered heteroaryl, wherein the ring member atoms of the heteroaryl include besides carbon atoms 1 , 2, 3 or 4 heteroatoms selected from the group of N, O and S, and wherein the aforementioned cyclic radicals are unsubstituted or carry 1 , 2, 3 or 4 iden- tical or different substituents R d .

In one embodiment, R c is halogen and preferably selected from F and Cl and in particular, R c is Cl. In another embodiment, R c is CN. In a further embodiment, R c is Ci-Cβ-alkyl and preferably selected from methyl, ethyl, n-propyl and i-propyl, and in particular, R c is methyl. In a further embodiment, R c is d-Cβ-haloalkyl. More preferably, R c is d-haloalkyl and selected from fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl and trichloromethyl, and in particular, R c is trifluoromethyl. In a further embodiment, R c is d-Cβ-alkoxy and preferbly selected from methoxy and ethoxy.

In a further embodiment, R c is Cs-Cs-cycloalkyl and preferably selected from cyclo- propyl, cylopentyl and cyclohexyl, and in particular, R c is cyclopropyl. In a further embodiment, R c is Ci-C6-alkyl-C3-C8-cycloalkyl and selected from cylopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl, cycloheptylmethyl and cyclo- octylmethyl. In a further embodiment, R c is phenyl. In a further embodiment, R c is phenoxy. In a further embodiment, R c is phenoxy-Ci-C6-alkyl and selected from phenoxymethyl, 1 -phenoxy-ethyl and 2-phenoxyethyl.

In a further embodiment, R c is a 6-membered heteroaryl, wherein the ring member atoms of the heteroaryl include besides carbon atoms 1 , 2 or 3 nitrogen atoms, and wherein R c is unsubstituted or carries 1 , 2, 3 or 4 identical or different groups R d . If R c is a 5-membered heteroaryl, R c carries 1 heteroatom as ring member atom. In another embodiment, R c is a furanyl radical that is unsubstituted or carries 1 , 2 or 3 identical or different substituents R d . In a further embodiment, R c is a thienyl radical that is unsubstituted or carries 1 , 2 or 3 identical or different substituents R d . In a further embodiment, R c is a pyrrolyl radical selected from pyrrol-2-yl and pyrrol-3-yl, wherein the aforementioned pyrrolyl radicals are unsubstituted or carry 1 , 2, 3 or 4 identical or different substituents R d .

If R c is a 5-membered heteroaryl, R c carries 2 heteroatoms as ring member atoms. In a further embodiment, R c is a pyrazolyl radical selected from pyrazol-3-yl, pyrazol- 4-yl and pyrazol-5-yl, wherein the aforementioned pyrazolyl radicals are unsubstituted or carry 1 , 2 or 3 identical or different substituents R d . In a further embodiment, R c is an imidazolyl radical that is unsubstituted or carries 1 , 2 or 3 identical or different substituents R d . A further embodiment relates to compounds I, wherein two radicals R c that are bound to adjacent ring member atoms of the group D form together with said ring member atoms a fused cycle being a fused 5-, 6- or 7-membered saturated, partially unsaturated or aromatic carbocycle or heterocycle, wherein the ring member atoms of the fused heterocycle include besides carbon atoms 1 , 2, 3 or 4 heteroatoms selected from the group of N, O and S, and wherein the fused cycle is unsubstituted and carries 1 , 2, 3 or 4 identical or different R e radicals. In one embodiment, the fused cycle is preferably phenyl. In another embodiment, the fused cycle is preferably a saturated carbocycle and in particular cyclohexyl. In a further embodiment, the fused cycle is preferably a partially unsaturated carbocycle and in particular cyclohexenyl. Preference is given to compounds I, wherein two radicals R c that are bound to adjacent ring member atoms of the group D form together with said ring member atoms a fused 6-membered heteroaryl, wherein the fused heteroaryl is unsubstituted and carries 1 , 2, 3 or 4 identical or different R e radicals. In one embodiment, the fused heteroaryl is pyridyl. In another embodiment, the fused heteroaryl is pyridazinyl. In a fur- ther embodiment, the fused heteroaryl is pyrimidinyl. In a further embodiment, the fused heteroaryl is pyrazinyl.

If R c is C(=O)R', R' is selected from NH 2 , Ci-C 4 -alkyl, Ci-C 4 -haloalkyl, Ci-C 4 -alkoxy, Ci-C 4 -alkoxy-Ci-C 4 -alkoxy, Ci-C 4 -haloalkoxy, Ci-C 4 -alkylamino and di(Ci-C 4 -alkyl)- amino. If R c is C(=O)R', R' is preferably NH 2 . If R c is C(=O)R', R' is preferably Ci-C 4 -alkyl and in particular, methyl. If R c is C(=O)R', R' is preferably Ci-C 4 -alkoxy and more preferably selected from methoxy and ethoxy. If R c is C(=O)R', R' is preferably Ci-C 4 -haloalkyl. More preferably, R' is Ci-haloalkyl and selected from fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl and trichloromethyl. If R c is C(=O)R', R' is preferably Ci-C 4 -alkoxy-Ci-C 4 -alkoxy and selected from methoxy- methoxy, methoxy-ethoxy, ethoxy-methoxy and ethoxy-ethoxy. If R c is C(=O)R', R' is preferably Ci-C 4 -alkylamino and in particular selected from methylamino and ethyl- amino. If R c is C(=O)R', R' is preferably di(Ci-C 4 -alkyl)amino and more preferably selected from dimethylamino, methyl-ethylamino and diethylamino.

If R c is C(=NOR")R'", in one embodiment, R" is Ci-C 4 -alkyl, Ci-C 4 -haloalkyl, C 2 -C 4 -alkenyl, C 2 -C 4 -alkynyl or Ci-C 4 -alkoxy-Ci-C 4 -alkyl.

If R c is C(=NOR")R"', R" is preferably Ci-C 4 -alkyl and more preferably selected from methyl, ethyl, n-propyl, i-propyl, and in particular, R" is methyl. If R c is C(=NOR")R"', R" is preferably C2-C4-alkenyl and selected from vinyl, prop-1-en-3-yl, but-1-en-3-yl, but- 1-en-4-yl and but-2-en-1-yl. If R c is C(=NOR")R"\ R" is preferably C 2 -C 4 -alkynyl and selected from prop-1-in-3-yl, but-1-in-3-yl, but-1-in-4-yl and but-2-in-1-yl. If R c is C(=NOR")R"\ R" is preferably Ci-C 4 -alkoxy-Ci-C 4 -alkyl and more preferably selected from methoxymethyl, ethoxymethyl, methoxyethyl and ethoxyethyl.

If R c is C(=NOR")R"\ R'" is Ci-C 4 -alkyl and preferably selected from methyl, ethyl, n-propyl, i-propyl, and in particular, R"' is methyl. If R c is C(=NOR")R'", in another embodiment, R"' is hydrogen.

If R c is present, one embodiment relates to compounds I, wherein R c carries 1 , 2, 3 or 4 radicals R d , preferably 1 , 2 or 3 radicals R d , and more preferably 1 or 2 radicals R d . In another embodiment, R c carries one radical R d . In a further embodiment, R c carries two radicals R d . In a further embodiment the group R c carries three radicals R d .

In one embodiment, R d is halogen and preferably selected from F and Cl, and in particular, Cl. In another embodiment, R d is CN. In a further embodiment, R d is Ci-C 4 -alkyl and preferably selected from methyl, ethyl, n-propyl and i-propyl and in particular, R d is methyl. In a further embodiment, R d is Ci-C 4 -haloalkyl. More preferably, R c is C-i-haloalkyl and selected from fluoromethyl, difluoromethyl, trifluoromethyl, chloro- methyl, dichloromethyl and trichloromethyl, and in particular, R d is trifluoromethyl. In a further embodiment, R d is Ci-C 4 -alkoxy and preferably selected from methoxy and eth- oxy. In a further embodiment, R d is Ci-C 4 -haloalkoxy and preferably halomethoxy such as difluoromethoxy, trifluoromethoxy, dichloromethoxy and trichloromethoxy; or halo- ethoxy such as 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy, 2,2-dichloroethoxy and 2,2,2-trichloroethoxy.

A skilled person will readily understand that the preferences given in connection with compounds I apply for formulae 1.1 and 1.2 and formulae I.A and I. B as defined above.

With respect to their use, particular preference is given to the compounds of formulae I.A to I. B compiled in the tables 1 to 96 below, wherein the definitions for the sub- stituents R a of the pyridine group are selected from P- 1 to P-6 in Table P and wherein the definitions for group A are selected from A-1 to A-8 as described above and wherein the definitions for group D are selected from D-1 to D-11 as described above. Here, the groups mentioned in the Tables for a substituent are furthermore, independently of the combination wherein they are mentioned, a particularly preferred embodiment of the substituent in question. Table 1 : Compounds of formula I.A, wherein R a1 , R a2 , R a3 and R a4 are defined as in line P-1 of table P, A is A-1 and the meaning of D for each compound corresponds to one line of table A.

Table 2: Compounds of formula I.A, wherein R a1 , R a2 , R a3 and R a4 are defined as in line P-2 of table P, A is A-1 and the meaning of D for each compound corresponds to one line of table A.

Table 3: Compounds of formula I.A, wherein R a1 , R a2 , R a3 and R a4 are defined as in line P-3 of table P, A is A-1 and the meaning of D for each compound corresponds to one line of table A.

Table 4: Compounds of formula I .A, wherein R a1 , R a2 , R a3 and R a4 are defined as in line P-4 of table P, A is A-1 and the meaning of D for each compound corresponds to one line of table A.

Table 5: Compounds of formula I .A, wherein R a1 , R a2 , R a3 and R a4 are defined as in line P-5 of table P, A is A-1 and the meaning of D for each compound corresponds to one line of table A.

Table 6: Compounds of formula I .A, wherein R a1 , R a2 , R a3 and R a4 are defined as in line P-6 of table P, A is A-1 and the meaning of D for each compound corresponds to one line of table A.

Tables 7 to 12: Compounds of formula I. A, wherein R a1 , R a2 , R a3 and R a4 are defined as in Tables 1 to 6, A is A-2 instead of A-1 and the meaning of D for each compound corresponds to one line of table A.

Tables 13 to 18: Compounds of formula I. A, wherein R a1 , R a2 , R a3 and R a4 are defined as in Tables 1 to 6, A is A-3 instead of A-1 and the meaning of D for each compound corresponds to one line of table A.

Tables 19 to 24: Compounds of formula I. A, wherein R a1 , R a2 , R a3 and R a4 are defined as in Tables 1 to 6, A is A-4 instead of A-1 and the meaning of D for each compound corresponds to one line of table A.

Tables 25 to 30: Compounds of formula I .A, wherein R a1 , R a2 , R a3 and R a4 are defined as in Tables 1 to 6, A is A-5 instead of A-1 and the meaning of D for each compound corresponds to one line of table A.

Tables 31 to 36: Compounds of formula I .A, wherein R a1 , R a2 , R a3 and R a4 are defined as in Tables 1 to 6, A is A-6 instead of A-1 and the meaning of D for each compound corresponds to one line of table A.

Tables 37 to 42: Compounds of formula I .A, wherein R a1 , R a2 , R a3 and R a4 are defined as in Tables 1 to 6, A is A-7 instead of A-1 and the meaning of D for each compound corresponds to one line of table A.

Tables 43 to 48: Compounds of formula I. A, wherein R a1 , R a2 , R a3 and R a4 are defined as in Tables 1 to 6, A is A-8 instead of A-1 and the meaning of D for each compound corresponds to one line of table A.

Tables 49 to 96: Compounds of formula I. B, wherein A, R a1 , R a2 , R a3 and R a4 are defined as in Tables 1 to 48, and the meaning of D for each compound corresponds to one line of table A.

The compounds I and the compositions according to the invention, respectively, are suitable as fungicides. They are distinguished by an outstanding effectiveness against a broad spectrum of phytopathogenic fungi, including soil-borne fungi, which derive especially from the classes of the Plasmodiophoromycetes, Peronosporomycetes (syn. Oomycetes), Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes and Deu- teromycetes (syn. Fungi imperfecti). Some are systemically effective and they can be used in crop protection as foliar fungicides, fungicides for seed dressing and soil fungicides. Moreover, they are suitable for controlling harmful fungi, which inter alia occur in wood or roots of plants.

The compounds I and the compositions according to the invention are particularly important in the control of a multitude of phytopathogenic fungi on various cultivated plants, such as cereals, e. g. wheat, rye, barley, triticale, oats or rice; beet, e. g. sugar beet or fodder beet; fruits, such as pomes, stone fruits or soft fruits, e. g. apples, pears, plums, peaches, almonds, cherries, strawberries, raspberries, blackberries or gooseberries; leguminous plants, such as lentils, peas, alfalfa or soybeans; oil plants, such as rape, mustard, olives, sunflowers, coconut, cocoa beans, castor oil plants, oil palms, ground nuts or soybeans; cucurbits, such as squashes, cucumber or melons; fiber plants, such as cotton, flax, hemp or jute; citrus fruit, such as oranges, lemons, grapefruits or mandarins; vegetables, such as spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes, cucurbits or paprika; lauraceous plants, such as avocados, cinnamon or camphor; energy and raw material plants, such as corn, soybean, rape, sugar cane or oil palm; corn; tobacco; nuts; coffee; tea; bananas; vines (table grapes and grape juice grape vines); hop; turf; natural rubber plants or ornamental and forestry plants, such as flowers, shrubs, broad-leaved trees or evergreens, e. g. conifers; and on the plant propagation material, such as seeds, and the crop material of these plants. Preferably, compounds I and compositions thereof, respectively are used for controlling a multitude of fungi on field crops, such as potatoes sugar beets, tobacco, wheat, rye, barley, oats, rice, corn, cotton, soybeans, rape, legumes, sunflowers, coffee or sugar cane; fruits; vines; ornamentals; or vegetables, such as cucumbers, tomatoes, beans or squashes. The term "plant propagation material" is to be understood to denote all the generative parts of the plant such as seeds and vegetative plant material such as cuttings and tubers (e. g. potatoes), which can be used for the multiplication of the plant. This includes seeds, roots, fruits, tubers, bulbs, rhizomes, shoots, sprouts and other parts of plants, including seedlings and young plants, which are to be transplanted after germi- nation or after emergence from soil. These young plants may also be protected before transplantation by a total or partial treatment by immersion or pouring.

Preferably, treatment of plant propagation materials with compounds I and compositions thereof, respectively, is used for controlling a multitude of fungi on cereals, such as wheat, rye, barley and oats; rice, corn, cotton and soybeans. The term "cultivated plants" is to be understood as including plants which have been modified by breeding, mutagenesis or genetic engineering including but not limiting to agricultural biotech products on the market or in development (cf. http://www.bio.org/speeches/pubs/er/agrLproducts.asp). Genetically modified plants are plants, which genetic material has been so modified by the use of recombinant DNA techniques that under natural circumstances cannot readily be obtained by cross breeding, mutations or natural recombination. Typically, one or more genes have been integrated into the genetic material of a genetically modified plant in order to improve certain properties of the plant. Such genetic modifications also include but are not limited to targeted post-translational modification of protein(s), oligo- or polypeptides e. g. by glycosylation or polymer additions such as prenylated, acetylated or farnesylated moieties or PEG moieties.

The compounds I and compositions thereof, respectively, are particularly suitable for controlling the following plant diseases: Alternaria spp. (Alternaria leaf spot) on vegetables, rape (A. brassicola or brassicae), sugar beets (A. tenuis), fruits, rice, soybeans, potatoes (e. g. A. solani or A. alternata), tomatoes (e. g. A. solani or A. alternata) and wheat; Bipolaris and Drechslera spp. (teleomorph: Cochliobolus spp.), e. g. Southern leaf blight (D. maydis) or Northern leaf blight (B. zeicola) on corn, e. g. spot blotch (B. sorokiniana) on cereals and e.g. B. oryzae on rice and turfs; Blumeria (formerly Erysiphe) graminis (powdery mildew) on cereals (e. g. on wheat or barley); Botrytis cinerea (teleomorph: Botryotinia fuckeliana: grey mold) on fruits and berries (e. g. strawberries), vegetables (e. g. lettuce, carrots, celery and cabbages), rape, flowers, vines, forestry plants and wheat; Drechslera (syn. Helminthosporium, teleomorph: Pyrenophora) spp. on corn, cereals, such as barley (e. g. D. teres, net blotch) and wheat (e. g. D. tritici-repentis: tan spot), rice and turf; Esca (dieback, apoplexy) on vines; Erysiphe spp. (powdery mildew) on sugar beets (E. betae), vegetables (e. g. E. pisi), such as cucurbits (e. g. E. cichoracearum), cabbages, rape (e. g. E. cruciferarum); Fusarium (teleomorph: Gibberella) spp. (wilt, root or stem rot) on various plants, such as F. graminearum or F. culmorum (root rot, scab or head blight) on cereals (e. g. wheat or barley), F. oxysporum on tomatoes, F. solani on soybeans and F. verticillioides on corn; Gaeumannomyces graminis (take-all) on cereals (e. g. wheat or barley) and corn; Gibberella spp. on cereals (e. g. G. zeae) and rice (e. g. G. fujikuroi: Bakanae disease); Guignardia bidwellii (black rot) on vines; Microdo- chium (syn. Fusarium) nivale (pink snow mold) on cereals (e. g. wheat or barley); Moni- linia spp., e. g. M. laxa, M. fructicola and M. fructigena (bloom and twig blight, brown rot) on stone fruits and other rosaceous plants; Mycosphaerella spp. on cereals, bananas, soft fruits and ground nuts, such as e. g. M. graminicola (anamorph: Septoria tritici, Septoria blotch) on wheat or M. fijiensis (black Sigatoka disease) on bananas; Peronospora spp. (downy mildew) on cabbage (e. g. P. brassicae), rape (e. g. P. parasitica), onions (e. g. P. destructor), tobacco (P. tabacina) and soybeans (e. g. P. manshurica); Phakopsora pachyrhizi and P. meibomiae (soybean rust) on soybeans; Phytophthora spp. (wilt, root, leaf, fruit and stem root) on various plants, such as paprika and cucurbits (e. g. P. capsici), soybeans (e. g. P. megasperma, syn. P. sojae), potatoes and tomatoes (e. g. P. infestans: late blight); Plasmopara spp., e. g. P. viticola (grapevine downy mildew) on vines; Puccinia spp. (rusts) on various plants, e. g. P. triticina (brown or leaf rust), P. striiformis (stripe or yellow rust), P. hordei (dwarf rust), P. graminis (stem or black rust) or P. recondita (brown or leaf rust) on cereals, such as e. g. wheat, barley or rye, and asparagus (e. g. P. asparagi); Pyrenophora (anamorph: Drechslera) tritici-repentis (tan spot) on wheat or P. teres (net blotch) on barley; Pyricu- laria spp., e. g. P. oryzae (teleomorph: Magnaporthe grisea, rice blast) on rice and P. grisea on turf and cereals; Pythium spp. (damping-off) on turf, rice, corn, wheat, cotton, rape, sunflowers, soybeans, sugar beets, vegetables and various other plants (e. g. P. ultimum or P. aphanidermatum); Rhizoctonia spp. on cotton, rice, potatoes, turf, corn, rape, potatoes, sugar beets, vegetables and various other plants, e. g. R. solani (root and stem rot) on soybeans, R. solani (sheath blight) on rice or R. cerealis (Rhizoctonia spring blight) on wheat or barley; Rhynchosporium secalis (scald) on barley, rye and triticale; Septoria spp. on various plants, e. g. S. glycines (brown spot) on soybeans, S. tritici (Septoria blotch) on wheat and S. (syn. Stagonospora) nodorum (Stagonospora blotch) on cereals; Uncinula (syn. Erysiphe) necator (powdery mildew, anamorph: Oidium tuckeri) on vines; Stagonospora spp. on cereals, e. g. S. nodorum (Stagonospora blotch, teleomorph: Leptosphaeria [syn. Phaeosphaeria] nodorum) on wheat; Venturia spp. (scab) on apples (e. g. V. inaequalis) and pears. The compounds I and compositions thereof, respectively, are also suitable for controlling harmful fungi in the protection of stored products or harvest and in the protection of materials. The term "protection of materials" is to be understood to denote the protection of technical and non-living materials, such as adhesives, glues, wood, paper and paperboard, textiles, leather, paint dispersions, plastics, colling lubricants, fiber or fabrics, against the infestation and destruction by harmful microorganisms, such as fungi and bacteria.

The compounds I and compositions thereof, resepectively, may be used for improving the health of a plant. The invention also relates to a method for improving plant health by treating a plant, its propagation material and/or the locus where the plant is growing or is to grow with an effective amount of compounds I and compositions thereof, respectively.

The term "plant health" is to be understood to denote a condition of the plant and/or its products which is determined by several indicators alone or in combination with each other such as yield (e. g. increased biomass and/or increased content of valuable ingredients), plant vigor (e. g. improved plant growth and/or greener leaves ("greening effect")), quality (e. g. improved content or composition of certain ingredients) and tolerance to abiotic and/or biotic stress.The above identified indicators for the health condition of a plant may be interdependent or may result from each other. The compounds of formula I can be present in different crystal modifications whose biological activity may differ. They are likewise subject matter of the present invention. The compounds I are employed as such or in form of compositions by treating the fungi or the plants, plant propagation materials, such as seeds, soil, surfaces, materials or rooms to be protected from fungal attack with a fungicidally effective amount of the active substances. The application can be carried out both before and after the infection of the plants, plant propagation materials, such as seeds, soil, surfaces, materials or rooms by the fungi.

The invention also relates to agrochemical compositions comprising a solvent or solid carrier and at least one compound I and to the use for controlling harmful fungi. An agrochemical composition comprises a fungicidally effective amount of a compound I. The term "effective amount" denotes an amount of the composition or of the compounds I, which is sufficient for controlling harmful fungi on cultivated plants or in the protection of materials and which does not result in a substantial damage to the treated plants. Such an amount can vary in a broad range and is dependent on various factors, such as the fungal species to be controlled, the treated cultivated plant or material, the climatic conditions and the specific compound I used.

The compounds I, their N-oxides and salts can be converted into customary types of agrochemical compositions, e. g. solutions, emulsions, suspensions, dusts, powders, pastes and granules. The composition type depends on the particular intended pur- pose; in each case, it should ensure a fine and uniform distribution of the compound according to the invention.

Examples for composition types are suspensions (SC, OD, FS), emulsifiable concentrates (EC), emulsions (EW, EO, ES), pastes, pastilles, wettable powders or dusts (WP, SP, SS, WS, DP, DS) or granules (GR, FG, GG, MG), which can be water- soluble or wettable, as well as gel formulations for the treatment of plant propagation materials such as seeds (GF).

Usually the composition types (e. g. SC, OD, FS, EC, WG, SG, WP, SP, SS, WS, GF) are employed diluted. Composition types such as DP, DS, GR, FG, GG and MG are usually used undiluted.

The compositions are prepared in a known manner (cf. US 3,060,084, EP-A 707 445 (for liquid concentrates), Browning: "Agglomeration", Chemical Engineering, Dec. 4, 1967, 147-48, Perry's Chemical Engineer's Handbook, 4th Ed., McGraw-Hill, New York, 1963, S. 8-57 und ff. WO 91/13546, US 4,172,714, US 4,144,050, US 3,920,442, US 5,180,587, US 5,232,701 , US 5,208,030, GB 2,095,558, US 3,299,566, Klingman: Weed Control as a Science (J. Wiley & Sons, New York, 1961), Hance et al.: Weed Control Handbook (8th Ed., Blackwell Scientific, Oxford, 1989) and Mollet, H. and Grubemann, A.: Formulation technology (Wiley VCH Verlag, Weinheim, 2001 ).

The agrochemical compositions may also comprise auxiliaries which are customary in agrochemical compositions. The auxiliaries used depend on the particular application form and active substance, respectively.

Examples for suitable auxiliaries are solvents, solid carriers, dispersants or emulsi- fiers (such as further solubilizers, protective colloids, surfactants and adhesion agents), organic and anorganic thickeners, bactericides, anti-freezing agents, anti-foaming agents, if appropriate colorants and tackifiers or binders (e. g. for seed treatment formulations).

Powders, materials for spreading and dusts can be prepared by mixing or conco- mitantly grinding the compounds I and, if appropriate, further active substances, with at least one solid carrier.

Granules, e. g. coated granules, impregnated granules and homogeneous granules, can be prepared by binding the active substances to solid carriers.

The agrochemical compositions generally comprise between 0.01 and 95%, pref- erably between 0.1 and 90%, most preferably between 0.5 and 90%, by weight of active substance. The active substances are employed in a purity of from 90% to 100%, preferably from 95% to 100% (according to NMR spectrum).

Water-soluble concentrates (LS), flowable concentrates (FS), powders for dry treatment (DS), water-dispersible powders for slurry treatment (WS), water-soluble powders (SS), emulsions (ES) emulsifiable concentrates (EC) and gels (GF) are usually employed for the purposes of treatment of plant propagation materials, particularly seeds. These compositions can be applied to plant propagation materials, particularly seeds, diluted or undiluted. The compositions in question give, after two-to-tenfold dilution, active substance concentrations of from 0.01 to 60% by weight, preferably from 0.1 to 40% by weight, in the ready-to-use preparations.

In a preferred embodiment, a suspension-type (FS) composition is used for seed treatment. Typcially, a FS composition may comprise 1-800 g/l of active substance, 1-200 g/l Surfactant, 0 to 200 g/l antifreezing agent, 0 to 400 g/l of binder, 0 to 200 g/l of a pigment and up to 1 liter of a solvent, preferably water.

Aqueous application forms can be prepared from emulsion concentrates, pastes or wettable powders (sprayable powders, oil dispersions) by adding water. To prepare emulsions, pastes or oil dispersions, the substances, as such or dissolved in an oil or solvent, can be homogenized in water by means of a wetter, tackifier, dispersant or emulsifier. Alternatively, it is possible to prepare concentrates composed of active substance, wetter, tackifier, dispersant or emulsifier and, if appropriate, solvent or oil, and such concentrates are suitable for dilution with water.

The active substance concentrations in the ready-to-use preparations can be varied within relatively wide ranges. In general, they are from 0.0001 to 10%, preferably from 0.001 to 1 % by weight of active substance.

The active substances may also be used successfully in the ultra-low-volume process (ULV), it being possible to apply compositions comprising over 95% by weight of active substance, or even to apply the active substance without additives. When employed in plant protection, the amounts of active substances applied are, depending on the kind of effect desired, from 0.001 to 2 kg per ha, preferably from 0.005 to 2 kg per ha, more preferably from 0.05 to 0.9 kg per ha, in particular from 0.1 to 0.75 kg per ha.

In treatment of plant propagation materials such as seeds, e. g. by dusting, coating or drenching seed, amounts of active substance of from 0.1 to 1000 g, preferably from 1 to 1000 g, more preferably from 1 to 100 g and most preferably from 5 to 100 g, per 100 kilogram of plant propagation material (preferably seed) are generally required.

When used in the protection of materials or stored products, the amount of active substance applied depends on the kind of application area and on the desired effect. Amounts customarily applied in the protection of materials are, e. g., 0.001 g to 2 kg, preferably 0.005 g to 1 kg, of active substance per cubic meter of treated material.

Various types of oils, wetters, adjuvants, herbicides, bactericides, other fungicides and/or pesticides may be added to the active substances or the compositions comprising them, if appropriate not until immediately prior to use (tank mix). These agents can be admixed with the compositions according to the invention in a weight ratio of 1 :100 to 100:1 , preferably 1 :10 to 10:1.

The compositions according to the invention can, in the use form as fungicides, also be present together with other active substances, e. g. with herbicides, insecticides, growth regulators, fungicides or else with fertilizers, as pre-mix or, if appropriate, not until immeadiately prior to use (tank mix).

Mixing the compounds I or the compositions comprising them in the use form as fungicides with other fungicides results in many cases in an expansion of the fungicidal spectrum of activity being obtained or in a prevention of fungicide resistance development. Furthermore, in many cases, synergistic effects are obtained. The following list of active substances, in conjunction with which the compounds according to the invention can be used, is intended to illustrate the possible combinations but does not limit them: A) strobilurins azoxystrobin, dimoxystrobin, enestroburin, fluoxastrobin, kresoxim-methyl, meto- minostrobin, orysastrobin, picoxystrobin, pyraclostrobin, pyribencarb, trifloxystrobin, 2-(2-(6-(3-chloro-2-methyl-phenoxy)-5-fluoro-pyrimidin-4-ylo xy)-phenyl)-2-methoxy- imino-N-methyl-acetamide, 3-methoxy-2-(2-(N-(4-methoxy-phenyl)-cyclopropane- carboximidoylsulfanylmethyl)-phenyl)-acrylic acid methyl ester, methyl (2-chloro-

5-[1 -(3-methylbenzyloxyimino)ethyl]benzyl)carbamate and 2-(2-(3-(2,6-di- chlorophenyl)-1-methyl-allylideneaminooxymethyl)-phenyl)-2-m ethoxyimino- N-methyl-acetamide; B) carboxamides - carboxanilides: benalaxyl, benalaxyl-M, benodanil, bixafen, boscalid, carboxin, fen- furam, fenhexamid, flutolanil, furametpyr, isopyrazam, isotianil, kiralaxyl, mepronil, metalaxyl, metalaxyl-M (mefenoxam), ofurace, oxadixyl, oxycarboxin, penthiopyrad, sedaxane, tecloftalam, thifluzamide, tiadinil, 2-amino-4-methyl-thiazole-5-carbox- anilide, 2-chloro-N-(1 ,1 ,3-trimethyl-indan-4-yl)-nicotinamide, N-(3',4',5'-trifluorobi- phenyl-2-yl)-3-difluoromethyl-1-methyl-1 H-pyrazole-4-carboxamide, N-(4'-trifluoro- methylthiobiphenyl-2-yl)-3-difluoromethyl-1-methyl-1 H-pyrazole-4-carboxamide, N-(2-(1 ,3-dimethyl-butyl)-phenyl)-1 ,3-dimethyl-5-fluoro-1 H-pyrazole-4-carboxamide and N-(2-(1 ,3,3-trimethyl-butyl)-phenyl)-1 ,3-dimethyl-5-fluoro-1 H-pyrazole-4-carbox- amide; - carboxylic morpholides: dimethomorph, flumorph, pyrimorph;

- benzoic acid amides: flumetover, fluopicolide, fluopyram, zoxamide, N-(3-Ethyl- 3,5,5-trimethyl-cyclohexyl)-3-formylamino-2-hydroxy-benzamid e;

- other carboxamides: carpropamid, dicyclomet, mandiproamid, oxytetracyclin, silthio- farm and N-(6-methoxy-pyridin-3-yl) cyclopropanecarboxylic acid amide; C) azoles

- triazoles: azaconazole, bitertanol, bromuconazole, cyproconazole, difenoconazole, diniconazole, diniconazole-M, epoxiconazole, fenbuconazole, fluquinconazole, flusi- lazole, flutriafol, hexaconazole, imibenconazole, ipconazole, metconazole, myclobu- tanil, oxpoconazole, paclobutrazole, penconazole, propiconazole, prothioconazole, simeconazole, tebuconazole, tetraconazole, triadimefon, triadimenol, triticonazole, uniconazole, 1-(4-chloro-phenyl)-2-([1 ,2,4]triazol-1-yl)-cycloheptanol;

- imidazoles: cyazofamid, imazalil, pefurazoate, prochloraz, triflumizol;

- benzimidazoles: benomyl, carbendazim, fuberidazole, thiabendazole;

- others: ethaboxam, etridiazole, hymexazole and 2-(4-chloro-phenyl)-N-[4-(3,4-di- methoxy-phenyl)-isoxazol-5-yl]-2-prop-2-ynyloxy-acetamide;

D) heterocyclic compounds

- pyridines: fluazinam, pyrifenox, 3-[5-(4-chloro-phenyl)-2,3-dimethyl-isoxazolidin- 3-yl]-pyridine, 3-[5-(4-methyl-phenyl)-2,3-dimethyl-isoxazolidin-3-yl]-pyrid ine, 2,3,5,6-tetra-chloro-4-methanesulfonyl-pyridine, 3,4,5-trichloropyridine-2,6-di-carbo- nitrile, N-(1 -(δ-bromo-S-chloro-pyridin^-y^-ethyQ^^-dichloronicotinamide ,

N-[(5-bromo-3-chloro-pyridin-2-yl)-methyl]-2,4-dichloro-n icotinamide; pyrimidines: bupirimate, cyprodinil, diflumetorim, fenarimol, ferimzone, mepani- pyrim, nitrapyrin, nuarimol, pyrimethanil; - piperazines: triforine;

- pyrroles: fenpiclonil, fludioxonil;

- morpholines: aldimorph, dodemorph, dodemorph-acetate, fenpropimorph, tride- morph; - piperidines: fenpropidin;

- dicarboximides: fluoroimid, iprodione, procymidone, vinclozolin;

- non-aromatic 5-membered heterocycles: famoxadone, fenamidone, flutianil, octhili- none, probenazole, 5-amino-2-isopropyl-3-oxo-4-ortho-tolyl-2,3-dihydro-pyrazole - 1-carbothioic acid S-allyl ester; - others: acibenzolar-S-methyl, amisulbrom, anilazin, blasticidin-S, captafol, captan, chinomethionat, dazomet, debacarb, diclomezine, difenzoquat, difenzoquat-methyl- sulfate, fenoxanil, Folpet, oxolinic acid, piperalin, proquinazid, pyroquilon, quin- oxyfen, triazoxide, tricyclazole, 2-butoxy-6-iodo-3-propylchromen-4-one, 5-chloro- 1 -(4,6-dimethoxy-pyrimidin-2-yl)-2-methyl-1 H-benzoimidazole, 5-chloro-7-(4-methyl- piperidin-1 -yl)-6-(2,4,6-trifluorophenyl)-[1 ,2,4]triazolo[1 ,5-a]pyrimidine and 5-ethyl-

6-octyl-[1 ,2,4]triazolo[1 ,5-a]pyrimidine-7-ylamine;

E) carbamates

- thio- and dithiocarbamates: ferbam, mancozeb, maneb, metam, methasulphocarb, metiram, propineb, thiram, zineb, ziram; - carbamates: benthiavalicarb, diethofencarb, iprovalicarb, propamocarb, propamo- carb hydrochlorid, valiphenal and N-(1-(1-(4-cyano-phenyl)ethanesulfonyl)-but-2-yl) carbamic acid-(4-fluorophenyl) ester;

F) other active substances

- guanidines: guanidine, dodine, dodine free base, guazatine, guazatine-acetate, iminoctadine, iminoctadine-triacetate, iminoctadine-tris(albesilate);

- antibiotics: kasugamycin, kasugamycin hydrochloride-hydrate, streptomycin, poly- oxine, validamycin A; nitrophenyl derivates: binapacryl, dinobuton, dinocap, nitrthal-isopropyl, tecnazen, organometal compounds: fentin salts, such as fentin-acetate, fentin chloride or fen- tin hydroxide;

- sulfur-containing heterocyclyl compounds: dithianon, isoprothiolane;

- organophosphorus compounds: edifenphos, fosetyl, fosetyl-aluminum, iprobenfos, phosphorous acid and its salts, pyrazophos, tolclofos-methyl;

- organochlorine compounds: chlorothalonil, dichlofluanid, dichlorophen, flusulfamide, hexachlorobenzene, pencycuron, pentachlorphenole and its salts, phthalide, quinto- zene, thiophanate-methyl, tolylfluanid, N-(4-chloro-2-nitro-phenyl)-N-ethyl-4-methyl- benzenesulfonamide;

- inorganic active substances: Bordeaux mixture, copper acetate, copper hydroxide, copper oxychloride, basic copper sulfate, sulfur; - others: biphenyl, bronopol, cyflufenamid, cymoxanil, diphenylamin, metrafenone, mildiomycin, oxin-copper, prohexadione-calcium, spiroxamine, tolylfluanid, N-(cyclo- propylmethoxyimino-(6-difluoro-methoxy-2,3-difluoro-phenyl)- methyl)-2-phenyl acetamide, N'-(4-(4-chloro-3-trifluoromethyl-phenoxy)-2,5-dimethyl-phen yl)-N-ethyl- N-methyl formamidine, N'-(4-(4-fluoro-3-trifluoromethyl-phenoxy)-2,5-dimethyl- phenyl)-N-ethyl-N-methyl formamidine, N'-(2-methyl-5-trifluoromethyl-4-(3-trimethyl- silanyl-propoxy)-phenyl)-N-ethyl-N-methyl formamidine, N'-(5-difluoromethyl- 2-methyl-4-(3-trimethylsilanyl-propoxy)-phenyl)-N-ethyl-N-me thyl formamidine, 2-{1 -[2-(5-methyl-3-trifluoromethyl-pyrazole-1 -yl)-acetyl]-piperidin-4-yl}-thiazole-4- carboxylic acid methyl-(1 ,2,3,4-tetrahydro-naphthalen-1-yl)-amide, 2-{1-[2-(5-meth- yl-3-trifluoromethyl-pyrazole-1-yl)-acetyl]-piperidin-4-yl}- thiazole-4-carboxylic acid methyl-(R)-1 ,2,3,4-tetrahydro-naphthalen-1-yl-amide, acetic acid 6-tert.-butyl-8- fluoro-2,3-dimethyl-quinolin-4-yl ester and methoxy-acetic acid 6-tert-butyl-8-fluoro- 2,3-dimethyl-quinolin-4-yl ester.

The present invention furthermore relates to agrochemical compositions comprising a mixture of at least one compound I (component 1 ) and at least one further active substance useful for plant protection, e. g. selected from the groups A) to I) (component 2), in particular one further fungicide, e. g. one or more fungicide from the groups A) to F), as described above, and if desired one suitable solvent or solid carrier. Those mixtures are of particular interest, since many of them at the same application rate show higher efficiencies against harmful fungi. By applying compounds I together with at least one active substance from groups A) to I) a synergistic effect can be obtained, i.e. more then simple addition of the individual effects is obtained (synergistic mixtures).

In binary mixtures, i.e. compositions according to the invention comprising one compound I (component 1) and one further active substance (component 2), e. g. one active substance from groups A) to I), the weight ratio of component 1 and component 2 generally depends from the properties of the active substances used, usually it is in the range of from 1 :100 to 100:1 , regularly in the range of from 1 :50 to 50:1 , preferably in the range of from 1 :20 to 20: 1 , more preferably in the range of from 1 :10 to 10:1 and in particular in the range of from 1 :3 to 3:1.

In ternary mixtures, i.e. compositions according to the invention comprising one compound I (component 1 ) and a first further active substance (component 2) and a second further active substance (component 3), e. g. two active substances from groups A) to I), the weight ratio of component 1 and component 2 depends from the properties of the active substances used, preferably it is in the range of from 1 :50 to 50:1 and particularly in the range of from 1 :10 to 10:1 , and the weight ratio of component 1 and component 3 preferably is in the range of from 1 :50 to 50:1 and particularly in the range of from 1 :10 to 10:1.

Preference is also given to mixtures comprising a compound I (component 1 ) and at least one active substance selected from the strobilurines of group A) (component 2) and particularly selected from azoxystrobin, dimoxystrobin, fluoxastrobin, kresoxim- methyl, orysastrobin, picoxystrobin, pyraclostrobin and trifloxystrobin. Preference is also given to mixtures comprising a compound I (component 1 ) and at least one active substance selected from the carboxamides of group B) (component 2) and particularly selected from bixafen, boscalid, sedaxane, fenhexamid, metalaxyl, isopyrazam, mefenoxam, ofurace, dimethomorph, flumorph, fluopicolid (picobenzamid), zoxamide, carpropamid, mandipropamid and N-(3',4',5'-trifluorobiphenyl-2-yl)-3-di- fluoromethyl-1 -methyl-1 H-pyrazole-4-carboxamide.

Preference is given to mixtures comprising a compound of formula I (component 1 ) and at least one active substance selected from the azoles of group C) (component 2) and particularly selected from cyproconazole, difenoconazole, epoxiconazole, fluquin- conazole, flusilazole, flutriafol, metconazole, myclobutanil, penconazole, propiconazole, prothioconazole, triadimefon, triadimenol, tebuconazole, tetraconazole, triticonazole, prochloraz, cyazofamid, benomyl, carbendazim and ethaboxam.

Preference is also given to mixtures comprising a compound I (component 1 ) and at least one active substance selected from the heterocyclic compounds of group D) (component 2) and particularly selected from fluazinam, cyprodinil, fenarimol, me- panipyrim, pyrimethanil, triforine, fludioxonil, dodemorph, fenpropimorph, tridemorph, fenpropidin, iprodione, vinclozolin, famoxadone, fenamidone, probenazole, proquina- zid, acibenzolar-S-methyl, captafol, folpet, fenoxanil, quinoxyfen and 5-ethyl-6-octyl- [1 ,2,4]triazolo[1 ,5-a]pyrimidine-7-ylamine.

Preference is also given to mixtures comprising a compound I (component 1 ) and at least one active substance selected from the carbamates of group E) (component 2) and particularly selected from mancozeb, metiram, propineb, thiram, iprovalicarb, ben- thiavalicarb and propamocarb. Preference is also given to mixtures comprising a compound I (component 1 ) and at least one active substance selected from the fungicides given in group F) (component 2) and particularly selected from dithianon, fentin salts, such as fentin acetate, fosetyl, fosetyl-aluminium, H3PO3 and salts thereof, chlorthalonil, dichlofluanid, thiophanat- methyl, copper acetate, copper hydroxide, copper oxychloride, copper sulfate, sulfur, cymoxanil, metrafenone and spiroxamine.

The active substances referred to as component 2, their preparation and their activity against harmful fungi is known (cf.: http://www.alanwood.net/pesticides/); these substances are commercially available. The compounds described by IUPAC nomenclature, their preparation and their fungicidal activity are also known (cf. Can. J. Plant Sci. 48(6), 587-94, 1968; EP-A 141 317; EP-A 152 031 ; EP-A 226 917; EP-A 243 970; EP-A 256 503; EP-A 428 941 ; EP-A 532 022; EP-A 1 028 125; EP-A 1 035 122; EP-A 1 201 648; EP-A 1 122 244, JP 2002316902; DE 19650197; DE 10021412; DE 102005009458; US 3,296,272; US 3,325,503; WO 98/46608; WO 99/14187; WO 99/24413; WO 99/27783; WO 00/29404; WO 00/46148; WO 00/65913; WO 01/54501 ; WO 01/56358; WO 02/22583; WO 02/40431 ; WO 03/10149; WO 03/11853; WO 03/14103; WO 03/16286; WO 03/53145; WO 03/61388; WO 03/66609; WO 03/74491 ; WO 04/49804; WO 04/83193; WO 05/120234; WO 05/123689; WO 05/123690; WO 05/63721 ; WO 05/87772; WO 05/87773; WO 06/15866; WO 06/87325; WO 06/87343; WO 07/82098; WO 07/90624). The mixtures of active substances can be prepared as compositions comprising besides the active ingredients at least one inert ingredient by usual means, e. g. by the means given for the compositions of compounds I. Concerning usual ingredients of such compositions reference is made to the explanations given for the compositions containing compounds I. The mixtures of active substances according to the present invention are suitable as fungicides, as are the compounds of formula I.

I. Synthesis examples With due modification of the starting compounds, the procedures shown in the synthesis examples below were used to obtain further compounds i. THe resulting compounds, together with physical data, are listed in Table I below.

Example 1 : 2-(4-chIoro-phenoxy)-ethanesulfonic acid (2-methoxy-pyridin-4-y)methyl)- amide

To a solution of 4-(aminomethyl)-2-rnethoxypyridine (155 mg) in CHsCN (20 ml) was added triethylamine (0.15 ml). The reaction mixture was cooled to 0 0 C, 2-(4-chlorc~ phenoxy)-ethanesulfonyl chloride (0.25 g) was added and the reaction mixture was stirred for 18 h at about 23°C. Subsequently, the solvent was removed in vacuum. The residue obtained was purified by flash column chromatography on silica gel (cyclc- heκan/ethyl acetate, 3:2) to yield the title compound as yellow oil (130 mg). 1 H-NMR (CDCl 3 ): δ- 3.45 (m, 2H), 3.9 (a, 3H), 4.3 (rn, 2H), 4.4 <m, 2H), 8.2 ppm (m, 1H).

Example 2: 2-phenyl-cyclopropaπesulfonic acid (pyridin-4-ylmethyl)-amide To a solution of pyridin-4-yl-methylamlne (86 mg) In CH3CN (20 ml) was added triethylamine (0.11 ml). The reaction mixture was cooled to O'C, 2-phenyl-cyctopro- paπesulfonyl chloride (0.15 g) was added and the reaction mixture was stirred for 18 h at about 23 β C. Subsequently, the solvent was removed in vacuum and the residue obtained was purified by flash column chromatography on silica gel (cyclohaxaπ/ethyl acetate, 3:2) to yield the title compound as yellow oil (80 mg). 1 H-NMR (CDCb): δ= 1.4 (m, 1H), 1.7 (m, 2H), 2.6 (m, 1H), 2.7 (m, 1H), 8.5 ppm (m, 2H).

'Physical data: m.p. [XJ; HPLC/MS R t [min], M+H + .

For A, the definition is selected from A-1 to A-60 as defined earlier herein. For Y, "d.b." means direct bond. . For (R a ) π , "-" indicates that n is 0.

HPLC column: RP-18 column (Chrømolith Speed ROD from Merck KgaA, Ger- many), 50 mm X 4,6 mm; Eluent: acetonitrile + 0.1% trifluoroacβtic acid (TFA) / water + 0.1% TFA (gradient from 5:95 to 95:5 in 5 min at 40 0 C, flow of 1 ,8 ml/min). MS: Quad- rupol Elektrospray lonisation, 80 V (positive mode).

II. Examples of the action against harmful fungi The fungicidal action of the compounds of the formula I was demonstrated by the following experiments:

A) Microtiter tests

The active substances WQCQ formulated separately as a stock solution in dimethyl sulf- oxide (DMSO) at a concentration of 10000 ppm. Use example 1 : Activity against the grey mold Botrytis cinerea

The stock solutions were mixed according to the ratio, pipetted onto a micro titer plate (MTP) and diluted with water to the stated concentrations. A spore suspension of Botrci cinerea in a yeast-bactopeptone-glycerol solution was then added. The plates were placed in a water vapor-saturated chamber at a temperature of 18°C. Using an absorption photometer, the MTPs were measured at 405 nm 9 days after the inoculation. The measured parameters were compared to the growth of the active compound-free control variant (100%) and the fungus-free and active compound-free blank value to determine the relative growth in % of the pathogens in the respective active compounds. In this test, the samples which had been treated with 125 ppm of the active compound from examples 9, 12, 15, 18, 21 , 24, 27, 30, 33, 35, 36, 37, 38, 39 and 40, respectively, showed up to at most 20% relative growth of the pathogen.

Use example 2: Activity against leaf blotch on wheat caused by Septoria tritici The stock solutions were mixed according to the ratio, pipetted onto a micro titer plate

(MTP) and diluted with water to the stated concentrations. A spore suspension of Septoria tritici in an yeast-bactopeptone-glycerol solution was then added. The plates were placed in a water vapor-saturated chamber at a temperature of 18°C. Using an absorption photometer, the MTPs were measured at 405 nm 9 days after the inoculation. The measured parameters were compared to the growth of the active compound-free control variant

(100%) and the fungus-free and active compound-free blank value to determine the relative growth in % of the pathogens in the respective active compounds.

In this test, the samples which had been treated with 125 ppm of the active compound from examples 12, 15, 17, 18, 32, 34, 35, 36, 37 and 38, respectively, showed up to at most 15% relative growth of the pathogen.