Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
TARGET TRACKING DEVICE COMPRISING A PHOTODETECTOR WITH QUADRANTS
Document Type and Number:
WIPO Patent Application WO/2019/057783
Kind Code:
A1
Abstract:
The present invention concerns a target tracking device (2), the device comprising an optical system (4) and a photodetector (6) with quadrants (Q1-Q4), wherein the optical system (4) is configured to project a light beam coming from the target onto a spot on at least one of the quadrants (Q1-Q4), and the photodetector (6) is configured to estimate a current position of the spot by weighting light energies received by the quadrants (Q1-Q4). The optical system (4) comprises an optical device (10) configured in order, when the spot is entirely contained in just one of the quadrants (Q1-Q4), to enlarge the spot. The invention also concerns a tracking method capable of being implemented by this tracking device.

Inventors:
DAVENEL ARNAUD (FR)
FERQUEL ROMAIN (FR)
Application Number:
PCT/EP2018/075367
Publication Date:
March 28, 2019
Filing Date:
September 19, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SAFRAN ELECTRONICS & DEFENSE (FR)
International Classes:
G01S3/786
Foreign References:
US20130070239A12013-03-21
US3954340A1976-05-04
US9194751B12015-11-24
US20130070239A12013-03-21
US3954340A1976-05-04
Attorney, Agent or Firm:
REGIMBEAU (FR)
Download PDF:
Claims:
REVENDICATIONS

1 . Dispositif de suivi (2) d'une cible, le dispositif comprenant un système optique (4) et un photodétecteur (6) à quadrants (Q1 -Q4), dans lequel

« le système optique (4) est configuré pour projeter un faisceau lumineux en provenance de la cible en une tache sur au moins un des quadrants (Q1 -Q4),

• le photodétecteur (6) est configuré pour estimer une position courante de la tache par pondération d'énergies lumineuses reçues par les quadrants (Q1 -Q4),

• le système optique (4) comprend un dispositif optique (10) configuré pour, lorsque la tache est entièrement contenue dans un seul des quadrants (Q1 -Q4), agrandir la tache,

le dispositif de suivi (2) étant caractérisé en ce que le dispositif optique (10) comprend un polyèdre (16, 18) destiné à être traversé par le faisceau lumineux et présentant plusieurs axes optiques (X2, Y2, Z2, X3, Y3), le polyèdre (16, 18) étant mobile en rotation par rapport au photodétecteur (6) autour d'un axe de rotation (R2, R3) différent de chacun des axes optiques.

2. Dispositif de suivi (2) de cible selon la revendication précédente, dans lequel la tache est agrandie jusqu'à ce que la tache couvre simultanément au moins deux des quadrants (Q1 - 04).

3. Dispositif de suivi (2) de cible selon l'une des revendications précédentes, dans lequel la tache est agrandie jusqu'à ce que la tache présente un diamètre prédéterminé supérieur ou égal à la longueur d'un côté d'un quadrant (Q1 -Q4).

4. Dispositif de suivi (2) de cible selon l'une des revendications 1 à 3, dans lequel le polyèdre est un hexaèdre (16) présentant trois axes optiques (X2, Y2, Z2) comprenant respectivement trois diagonales de l'hexaèdre (16), l'axe de rotation (R2) comprenant une autre diagonale de l'hexaèdre (16).

5. Dispositif de suivi (2) de cible selon la revendication précédente, dans lequel le polyèdre est un cube.

6. Dispositif de suivi (2) de cible selon l'une des revendications 1 à 3, dans lequel le polyèdre (18) présente deux axes optiques (X3, Y3) et comprend une face (20) en forme de quadrilatère destinée à être traversée par le faisceau lumineux, les deux axes optiques (X3, Y3) comprenant respectivement deux diagonales de la face (20) et l'axe de rotation (R3) étant perpendiculaire à la face (20). 7. Dispositif de suivi (2) de cible selon la revendication précédente, dans lequel la face (20) en forme de quadrilatère est carrée.

8. Dispositif de suivi (2) de cible selon l'une des revendications précédentes, dans lequel :

• le photodétecteur (6) présente un centre ayant une position centrale prédéterminée, « les quadrants (Q1 -Q4) sont agencés autour du centre,

• le dispositif de suivi (2) de cible est propre à être monté mobile sur un aéronef (1 ),

• le dispositif de suivi (2) de cible comprend un module de commande configuré pour générer, à partir de la position courante estimée et de la position centrale prédéterminée, au moins une commande de réorientation du dispositif de suivi (2) par rapport à l'aéronef (1 ), la commande étant adaptée pour que la tache se déplace vers le centre de photodétecteur (6) selon une trajectoire sensiblement rectiligne.

9. Dispositif de suivi (2) de cible selon l'une des revendications précédentes, comprenant par ailleurs un actionneur multi-stable configuré pour placer le polyèdre dans des positions angulaires différentes, dans lesquelles la tache projetée a des tailles différentes.

10. Aéronef (1 ) comprenant un dispositif de suivi (2) de cible selon l'une des revendications précédentes. 1 1 . Procédé de suivi d'une cible mis en œuvre par un dispositif comprenant un système optique (4) configuré pour projeter un faisceau lumineux en provenance de la cible en une tache sur au moins un quadrant d'un photodétecteur (6) à quadrants (Q1 -Q4) configuré pour estimer (104) une position courante de la tache par pondération d'énergies lumineuses reçues par les quadrants (Q1 -Q4), le procédé étant caractérisé en ce qu'il comprend, lorsque la tache est entièrement contenue dans un seul des quadrants (Q1 -Q4), un agrandissement de la tache par un dispositif optique (10) du système optique (4), le procédé étant caractérisé en ce que le dispositif optique (10) comprend un polyèdre (16, 18) destiné à être traversé par le faisceau lumineux et présentant plusieurs axes optiques (X2, Y2, Z2, X3, Y3), le polyèdre (16, 18) étant mobile en rotation par rapport au photodétecteur (6) autour d'un axe de rotation (R2, R3) différent de chacun des axes optiques.

12. Procédé selon la revendication 1 1 , dans lequel le polyèdre est un hexaèdre (16) présentant trois axes optiques (X2, Y2, Z2) comprenant respectivement trois diagonales de l'hexaèdre (16), l'axe de rotation (R2) comprenant une autre diagonale de l'hexaèdre (16).

13. Procédé selon la revendication précédente, dans lequel le polyèdre est un cube.

14. Procédé selon la revendication 1 1 , dans lequel le polyèdre (18) présente deux axes optiques (X3, Y3) et comprend une face (20) en forme de quadrilatère destinée à être traversée par le faisceau lumineux, les deux axes optiques (X3, Y3) comprenant respectivement deux diagonales de la face (20) et l'axe de rotation (R3) étant perpendiculaire à la face (20).

15. Procédé selon la revendication précédente, dans lequel la face (20) en forme de quadrilatère est carrée.

Description:
Dispositif de suivi de cible comprenant un photodétecteur à quadrants DOMAINE DE L'INVENTION

La présente invention concerne un dispositif de suivi d'une cible utilisant un photodétecteur à quadrants.

ETAT DE LA TECHNIQUE

Pour suivre une cible à distance, il est connu d'illuminer la cible avec un faisceau laser, de sorte que ce faisceau se réfléchisse sur la cible et que l'écho laser résultant de cette réflexion soit projeté sur un photodétecteur à quatre quadrants, plus simplement appelé « détecteur quatre quadrants » ou « détecteur 4Q ».

Ce type de détecteur est conventionnellement embarqué dans un aéronef tel qu'un hélicoptère.

On a illustré en figure 1 les quatre quadrants Q1 à Q4 d'un détecteur 4Q conventionnel. Le détecteur estime une position courante d'une tache par pondération d'énergies lumineuses reçues par les quadrants Q1 à Q4, lesquels s'étendent autour d'un centre C. De cette position courante, on peut déduire comment la cible est orientée par rapport à l'aéronef 1.

Or, dans certaines applications, afin de pouvoir atteindre une précision d'écartométrie très élevée (typiquement inférieur à 500 microradians), l'ensemble optronique composé du système optique et du détecteur 4Qdoit être conçu de façon à ce que l'écho laser se projette sur les quadrants en une tache T très petite, au point que la tache ne s'étend que dans un seul des quadrants du détecteur 4Q (le quadrant Q4 dans l'exemple représenté en figure 1 ).

Dans une telle situation, aucune pondération ne peut avoir lieu puisqu'un seul des quadrants reçoit de l'énergie lumineuse. On sait alors que la tache se trouve de manière générale à l'intérieur du seul quadrant qui reçoit de l'énergie lumineuse, mais la position exacte de la tache dans ce quadrant ne peut pas être précisément estimée.

Pour qu'une pondération puisse à nouveau être mise en œuvre, une solution connue est de déplacer la tache T de sorte qu'elle couvre simultanément plusieurs quadrants du détecteur 4Q. Un tel déplacement est typiquement obtenu en réorientant le dispositif comprenant le système optique et le détecteur 4Q par rapport à la cible.

Toutefois, il n'est pas possible de connaître à l'avance la commande d'orientation nécessaire pour qu'après application de la commande au moins deux des quatre quadrants soient éclairés. Dès lors, la réorientation du dispositif comprenant le système optique et le détecteur 4Q est commandée manuellement par un utilisateur. Généralement, une telle commande manuelle imprime un mouvement de rotation au dispositif comprenant le système optique et le détecteur 4Q de telle sorte que la tache suit une trajectoire en spirale vers le centre du détecteur 4Q, comme représenté sur la figure 1 . Cette méthode est toutefois longue et fastidieuse. De plus, cette méthode dépend de la dextérité et de l'expérience de l'utilisateur.

Il a été proposé dans le document US 2013/0070239 et dans le document US 3,954,340 d'inclure à un dispositif de suivi de cible comprenant un photodétecteur à quadrants un dispositif optique configuré pour agrandir une tache entièrement contenue dans un seul des quadrants d'un photodétecteur 4Q. Ce dispositif optique est en fait un défocalisateur qui agrandit la tache en défocalisant le faisceau lumineux. Le défocalisateur comprend une lentille défocalisatrice mobile en translation par rapport au photodétecteur 4Q.

Le fait d'agrandir la tache projetée a pour effet de rapprocher le bord de la tache d'une frontière entre deux quadrants.

Si le rapprochement suscité par l'agrandissement est tel que la tache couvre simultanément au moins deux des quadrants, alors une pondération peut directement être mise en œuvre, et la position de la tache être en conséquence être estimée. Lorsque cette condition n'est pas directement satisfaite au terme de l'étape d'agrandissement, un déplacement de la tache doit être mis en œuvre. Néanmoins, le déplacement qu'il faut mettre en œuvre pour que la tache couvre simultanément au moins deux des quadrants devient plus court après l'étape d'agrandissement. La commande qu'il convient d'utiliser pour assurer ce déplacement de la tache est donc beaucoup plus simple après l'agrandissement. Par exemple, si l'on part du principe que la tache peut être déplacée sur le photodétecteur par incréments, le nombre d'incréments requis pour que la tache traverse au moins une frontière entre deux quadrants voisins est réduit.

Toutefois agrandir la tache au moyen d'un défocalisateur présente des inconvénients.

Un défocalisateur est très sensible à des vibrations et à des variations de température, ce qui a des conséquences néfastes sur une éventuelle harmonisation entre le dispositif de suivi utilisé et un illuminateur émettant le faisceau laser. Le déplacement de la lentille défocalisatrice est par ailleurs consommateur d'énergie, et n'est pas facile à piloter. Enfin, un défocalisateur présente une qualité de transmission perfectible.

EXPOSE DE L'INVENTION

Un but poursuivi par l'invention est de pouvoir retrouver plus rapidement la position d'une tache projetée sur un détecteur à quadrants, lorsque cette tache se retrouve confinée à un seul quadrant, au moyen d'un dispositif plus robuste aux vibrations ou à la thermique moins consommateur d'énergie électrique, plus facile à piloter, et présentant une plus grande qualité de transmission.

Il est dès lors proposé, selon un premier aspect de l'invention, un dispositif de suivi d'une cible, le dispositif comprenant un système optique et un photodétecteur à quadrants, dans lequel le système optique est configuré pour projeter un faisceau lumineux en provenance de la cible en une tache sur au moins un des quadrants, dans lequel le photodétecteur est configuré pour estimer une position courante de la tache par pondération d'énergies lumineuses reçues par les quadrants, et dans lequel le système optique comprend un dispositif optique configuré pour, lorsque la tache est entièrement contenue dans un seul des quadrants, agrandir la tache. Le dispositif optique comprend un polyèdre destiné à être traversé par le faisceau lumineux et présentant plusieurs axes optiques, le polyèdre étant mobile en rotation par rapport au photodétecteur autour d'un axe de rotation différent de chacun des axes optiques.

Le polyèdre utilisé est plus robuste aux vibrations et à la thermique qu'une lentille défocalisatrice, et présente une meilleure qualité de transmissions.

Le dispositif de suivi selon le premier aspect de l'invention peut en outre comprendre les caractéristiques optionnelles suivantes, prises seules ou en combinaison.

La tache peut être agrandie jusqu'à ce que la tache couvre simultanément au moins deux des quadrants. Ainsi, il n'est pas nécessaire de générer de commande de déplacement de la tache agrandie pour que la position de cette tache puisse être estimée par pondération d'énergies lumineuses reçues par les cadrans.

Par ailleurs, la tache peut être agrandie jusqu'à ce que la tache présente un diamètre prédéterminée supérieur ou égal à la longueur d'un côté d'un quadrant. Il se peut dans ce cas que la tache agrandie ne couvre pas immédiatement plusieurs quadrants. Une commande de déplacement de la tache adaptée pour satisfaire cette condition est néanmoins singulièrement simplifiée par le fait d'avoir agrandi la tache à un tel diamètre.

Le polyèdre peut être un hexaèdre, par exemple un cube, présentant trois axes optiques comprenant respectivement trois diagonales de l'hexaèdre, l'axe de rotation comprenant une autre diagonale de l'hexaèdre. En variante, le polyèdre peut présenter deux axes optiques et comprendre une face en forme de quadrilatère, par exemple carrée, destinée à être traversée par le faisceau lumineux, les deux axes optiques comprenant respectivement deux diagonales de la face et l'axe de rotation étant perpendiculaire à la face.

Le dispositif de suivi peut comprendre par ailleurs un actionneur multi-stable configuré pour placer le polyèdre dans des positions angulaires différentes, dans lesquelles la tache projetée a des tailles différentes. Par ailleurs, il peut être prévu les caractéristiques suivantes :

• le photodétecteur présente un centre ayant une position centrale prédéterminée,

• les quadrants sont agencés autour du centre,

• le dispositif de suivi de cible est propre à être monté mobile sur un aéronef,

• le dispositif de suivi de cible comprend un module de commande configuré pour générer, à partir de la position courante estimée et de la position centrale prédéterminée, au moins une commande de réorientation du dispositif de suivi par rapport à l'aéronef, la commande étant adaptée pour que la tache se déplace vers le centre de photodétecteur selon une trajectoire sensiblement rectiligne.

Selon un deuxième aspect de l'invention, il est proposé un aéronef comprenant un dispositif de suivi de cible selon le premier aspect de l'invention .

Selon un troisième aspect de l'invention, il est proposé un procédé de suivi d'une cible mis en œuvre par un dispositif comprenant un système optique configuré pour projeter un faisceau lumineux en provenance de la cible en une tache sur au moins un quadrant d'un photodétecteur à quadrants configuré pour estimer une position courante de la tache par pondération d'énergies lumineuses reçues par les quadrants couverts par la tache, le procédé comprenant, lorsque la tache est entièrement contenue dans un seul des quadrants, un agrandissement de la tache par un dispositif optique du système optique.

DESCRIPTION DES FIGURES

D'autres caractéristiques, buts et avantages de l'invention ressortiront de la description qui suit, qui est purement illustrative et non limitative, et qui doit être lue en regard des dessins annexés sur lesquels :

• La figure 1 illustre de façon schématique un photodétecteur à quatre quadrants sur lequel un faisceau lumineux est projeté ;

• Les figures 2 et 3 illustrent de façon schématique un dispositif de suivi d'une cible selon un mode de réalisation de l'invention ;

• La figure 4 est une vue en perspective d'un dispositif optique selon un premier mode de réalisation de l'invention,

• La figure 5 est une vue en perspective d'un dispositif optique selon un deuxième mode de réalisation de l'invention,

• La figure 6 est un organigramme d'étapes d'un procédé de suivi d'une cible selon un mode de réalisation de l'invention, • les figures 7 et 8 illustrent chacune de façon schématique un photodétecteur à quatre quadrants et deux taches projetées sur ce photodétecteur au cours de la mise en œuvre du procédé de suivi selon la figure 6.

Sur l'ensemble des figures, les éléments similaires portent des références identiques.

DESCRIPTION DETAILLEE DE L'INVENTION

En référence à la figure 2, un aéronef 1 comprend un dispositif de suivi 2 d'une cible. Le dispositif de suivi 2 est monté à rotation sur l'aéronef 1 , par exemple au moyen d'une liaison rotule ou une liaison pivot.

Le dispositif de suivi 2 comprend des moyens internes pour mettre en rotation le dispositif de suivi 2 par rapport à l'aéronef 1 . Ces moyens internes comprennent typiquement au moins un moteur et un module de commande du ou chaque moteur. Chaque moteur permet de mettre le dispositif 2 en rotation autour d'un axe associé à ce moteur. Par conséquent, lorsque les moyens internes comprennent plusieurs moteurs, le dispositif de suivi peut être mis en rotation autour de deux axes différents.

Par ailleurs, le dispositif de suivi 2 d'une cible comprend un objectif 3, un système optique 4 et un photodétecteur 6.

Un faisceau lumineux en provenance d'une cible à suivre peut entrer dans le dispositif de suivi 2 par cet objectif 3.

En référence à la figure 3, le système optique 4 est configuré pour projeter un faisceau lumineux reçu par l'objectif 3 sur le photodétecteur 6 en une tache T.

Le photodétecteur 6, connu en lui-même, comprend quatre quadrants Q1 , Q2, Q3 et Q4 comme ceux représentés schématiquement sur la figure 1 . Les quatre quadrants s'étendent autour d'un centre C du photodétecteur 6 dont la position, dite position centrale, est prédéterminée. Chaque quadrant Qi est adapté pour générer un signal électrique fonction de la quantité d'énergie lumineuse qu'il reçoit par unité de surface.

Les quatre quadrants peuvent présenter chacune une forme en quart de cercle, comme dans l'exemple représenté en figure 1 . L'ensemble formé par les quatre quadrants est ainsi en forme de cercle, et le centre C est le centre de ce cercle. Dans ce cas, on considère par convention que le côté d'un quadrant est égal au rayon de ce cercle.

Alternativement, les quatre quadrants peuvent chacun présenter une forme carrée. Dans ce cas, l'ensemble formé par les quatre quadrants est également carré, et le centre C se trouve au centre de ce carré.

Le photodétecteur 6 comprend par ailleurs (ou est couplé à) un pondérateur 8 configuré pour estimer une position courante de la tache T par pondération des signaux électriques générés par les différents quadrants Q1 -Q4 selon une méthode de pondération connue de l'état de la technique.

Le système optique 4 comprend par ailleurs un dispositif optique 10 configuré pour modifier un faisceau lumineux en provenance de l'objectif 3 de sorte à pouvoir modifier la taille de la tache constituant la projection du faisceau lumineux sur le photodétecteur 6.

Le dispositif de suivi 1 comprend en outre une unité de commande pour générer et envoyer des commandes au dispositif optique 10, ces commandes étant sont adaptées pour ainsi modifier le faisceau lumineux. L'unité de commande est par exemple comprise dans le pondérateur 8, ou bien couplée à celui-ci.

Le dispositif optique 10 comprend un polyèdre translucide destiné à être traversé par un faisceau lumineux reçu par l'objectif 3. Le polyèdre présente plusieurs axes optiques, et est mobile en rotation par rapport au photodétecteur 6 autour d'un axe différent de chacune de ses axes optiques.

Un tel polyèdre pour modifier le faisceau présente plusieurs avantages par rapport à un défocalisateur : il est plus robuste aux vibrations ou à la thermique (sensibilité de l'harmonisation entre le dispositif de suivi 1 et l'illuminateur), consomme moins d'énergie électrique, et est plus facile à piloter. En outre, le polyèdre présente une meilleure qualité de transmission qu'une lentille défocalisatrice.

Le dispositif de suivi 1 comprend par ailleurs un actionneur pour mettre en rotation le polyèdre par rapport au photodétecteur 6.

L'actionneur est configuré pour placer le polyèdre dans des positions angulaires différentes, dans lesquelles la tache projetée sur le photodétecteur 6 a des tailles différentes.

L'actionneur est de préférence multi-stable, ce qui permet de réaliser des économies d'énergie supplémentaires.

Le polyèdre peut être décliné en plusieurs variantes.

En référence à la figure 4, un dispositif optique 10 selon un premier mode de réalisation comprend un polyèdre 16 conforme à ce qui précède, présentant trois axes optiques X2, Y2, 22. Dans ce cas, le polyèdre est un hexaèdre : il peut alors être un cube, comme représenté sur la figure 5, ou un parallélépipède.

L'hexaèdre présente huit sommets, dont : deux premiers sommets opposés passant par une première diagonale de l'hexaèdre, deux deuxièmes sommets opposés passant par une deuxième diagonale de l'hexaèdre, deux troisièmes sommets opposés passant par une troisième diagonale de l'hexaèdre, et deux quatrièmes sommets opposés passant par une quatrième diagonale de l'hexaèdre. Les trois axes optiques X2, Y2, Z2 comprennent respectivement les première, deuxième et troisième diagonales de l'hexaèdre.

L'hexaèdre est par ailleurs mobile en rotation par rapport au photodétecteur 6 autour d'un axe de rotation R comprenant la quatrième diagonale de l'hexaèdre.

Un avantage procuré par un hexaèdre à trois axes optiques permet de pouvoir obtenir trois différentes tailles de taches ; ceci apporte de la souplesse dans la mise en œuvre du procédé qui sera décrit ci-après.

En référence à la figure 5, un deuxième mode de réalisation du dispositif optique 10 comprend un polyèdre 18 présentant seulement deux axes optiques X3, Y3.

Le polyèdre présente notamment une face 20 destinée à être traversée par un faisceau lumineux reçu par l'objectif 3. La face 20 est un quadrilatère, par exemple un carré, qui présente quatre sommets dont : deux premiers sommets opposés passant par une première diagonale de la face, deux deuxièmes sommets opposés passant par la seconde diagonale de la face.

Les deux axes optiques X3, Y3 du polyèdre 18 comprennent respectivement les première et seconde diagonales de la face 20.

Le polyèdre 18 est par ailleurs mobile en rotation par rapport au photodétecteur 6 autour d'un axe de rotation R3 orthogonal au plan de la face 20. L'axe de rotation R3 passe par exemple par le point d'intersection des diagonales de la face.

Dans cette variante, le polyèdre présente typiquement une forme de plaque de faible épaisseur mesurée perpendiculairement à la face.

Le polyèdre 18 est plus simple de conception et plus compact que le polyèdre 16. En référence à la figure 6, un procédé mis en œuvre au moyen du dispositif de suivi 2 1 comprend les étapes suivantes, pour suivre une cible.

On suppose que la cible T est illuminée par un illuminateur, par exemple embarqué dans l'aéronef 1. Cet illuminateur est par exemple un laser.

Un faisceau lumineux généré par l'illuminateur se réfléchit sur la cible T, et pénètre dans le dispositif de suivi 1 par son objectif 3.

Le faisceau lumineux reçu par l'objectif 3 est projeté par le système optique 4 sur le photodétecteur 6 à quadrants en une tache T.

A ce stade, le dispositif optique 10 fonctionne dans un premier mode de fonctionnement, dans lequel la tache T formée par la projection du faisceau lumineux sur le photodétecteur 6 est plus petite que le côté d'un quadrant. Bien entendu, lorsque la cible se déplace par rapport au dispositif de suivi 2, la tache se déplace sur le photodétecteur 6 (l'aéronef 1 est en effet mobile, et la cible peut bien évidemment l'être également).

Au cours d'une étape 100, le photodétecteur 6 détecte que la tache T est contenue dans un seul de ses quadrants, par exemple le quadrant Q1 , comme cela est représenté sur la figure 7. Une telle détection est typiquement effectuée par l'unité de pondération, en comparant l'intensité des signaux électriques générées par les différents quadrants du photodétecteur 6 à un seuil prédéterminé. Une telle détection survient plus particulièrement en constatant que les trois signaux électriques générés par trois des quadrants (ici les quadrants Q2, Q3, Q4) ont des intensités inférieures au seuil prédéterminé, signifiant que les ces trois quadrants n'ont pas reçu d'énergie lumineuse substantielle, tandis que le signal électrique généré par le quadrant Q1 a une intensité supérieure au seuil, ce qui signifie que le quadrant Q1 a, lui, reçu de l'énergie lumineuse en quantité substantielle.

Lorsqu'une telle détection 100 survient, le photodétecteur 6 n 'est pas capable de déterminer avec précision où se trouve la tache, et risque notamment de sortir du champ de vue de l'objectif 3 du dispositif de suivi 2.

Aussi, lorsqu'une telle détection 100 survient, le dispositif optique 10 est reconfiguré (étape 102) de sorte à agrandir la tache se trouvant à ce stade uniquement sur le quadrant Q1 , et ce jusqu'à ce que la tache couvre non seulement le quadrant Q1 , mais également au moins un des trois quadrants Q2, Q3, Q4.

Dans l'exemple représenté en figure 5, la tache T devient après agrandissement une tache référencée T' couvrant au moins partiellement les quadrants Q1 et Q4 simultanément.

La reconfiguration 102 du dispositif optique 10 comprend par exemple une génération, par le pondérateur, d'une commande de reconfiguration du dispositif optique 10s et la transmission de cette commande au dispositif optique 10 pour susciter l'agrandissement de la tache T en la tache T'.

L'agrandissement suscité par la reconfiguration 102 est par exemple stoppé dès que l'unité de pondération détecte qu'au moins deux des quatre signaux électriques qu'il reçoit a une intensité supérieure au seuil prédéterminé (soit deux signaux électriques parmi les quatre signaux, soit trois signaux électriques parmi les quatre signaux générés, soit les quatre signaux). Cela signifie en effet que la tache agrandie T' couvre plusieurs quadrants simultanément.

On considère formellement que le dispositif optique 10 se trouve dans un deuxième mode de fonctionnement une fois que cette condition est vérifiée. Par ailleurs, une fois que cette condition est vérifiée, l'unité de pondération peut pondérer les signaux électriques qu'elle reçoit de sorte à estimer la position courante du centre de la tache sur le détecteur.

Ensuite, le module de commande génère, à partir de la position courante estimée et de la position centrale prédéterminée, au moins une commande de réorientation du dispositif de suivi 2 adaptée pour que la tache se déplace vers le centre de photodétecteur 6 selon une trajectoire sensiblement rectiligne.

La commande générée est transmise au(x) moteur(s), qui entraîne une rotation du dispositif de suivi 2 par rapport à l'aéronef 1 . Au cours de cette rotation, la tache se déplace vers le centre de photodétecteur 6 selon une trajectoire sensiblement rectiligne.

Il peut être prévu que l'étape d'agrandissement soit conduite jusqu'à ce que la tache présente un diamètre prédéterminé. En effet, trop agrandir la tache pourrait conduire à une déperdition d'énergie lumineuse (une grande partie du faisceau lumineux serait projeté hors du photodétecteur 6). Ce diamètre prédéterminé est de préférence supérieur ou égal à la longueur d'un côté d'un quadrant.

Bien entendu, il se peut que, lorsque le diamètre prédéterminé a été atteint, la tache agrandie couvre bien plusieurs quadrants du photodétecteur 6 comme supposé précédemment, permettant ainsi de mettre à nouveau en œuvre une pondération d'énergies lumineuses reçues par les quadrants.

Toutefois, il se peut également que cette condition ne soit pas satisfaite lorsque le diamètre prédéterminé a été atteint. En référence à la figure 8, on a représenté un exemple de tache T se trouvant dans le quadrant Q1. La tache T est distante du quadrant voisin Q4 d'une distance L. Au terme de l'étape d'agrandissement, la tache T est devenue la tache agrandie T' (représentée en pointillés) ayant un diamètre égal à la longueur d d'un côté d'un quadrant. Bien que la tache agrandie T' demeure à distance des quadrants Q2, Q3 et Q4, il n'en demeure pas moins que cette distance a été diminuée par l'agrandissement. Par exemple, la tache agrandie est distante du quadrant Q4 d'une distante L' inférieure à la distance L.

Lorsqu'il est détecté que seul un quadrant reçoit de l'énergie lumineuse du faisceau même après agrandissement (Q1 dans l'exemple de la figure 8), un déplacement de la tache en direction du quadrant opposé est commandé. Comme la distance L' est inférieure à la distance L, la commande à utiliser demeure plus simple que la commande qu'il aurait fallu utiliser sans l'étape d'agrandissement.

En définitive, deux événements peuvent déclencher la fin de l'étape d'agrandissement : une couverture de la tache sur plusieurs quadrants, ou bien l'atteinte d'un diamètre de tache de valeur prédéterminée (supérieur ou égal à la longueur d'un côté d'un quadrant).