Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
TERNARY MIXTURES CONTAINING FENPROPIMORPH, SUCCINATE DEHYDROGENASE INHIBITORS AND STROBILURINS
Document Type and Number:
WIPO Patent Application WO/2021/197884
Kind Code:
A1
Abstract:
The present invention relates to fungicidal mixtures comprising, as active components, (1) fenpropimorph as compound I, and (2) one fungicidal compound II, wherein compound II is an inhibitor of succinate dehydrogenase and selected from the group consisting of: 2-(difluoromethyl)-N-(1,1-dimethyl-3-propyl-indan-4-yl)pyridine-3-carboxamide, 2-(difluoromethyl)-N-[(3R)-1,1-dimethyl-3-propyl-indan-4-yl]pyridine-3-carboxamide 2-(difluoromethyl)-N-(1, 1,3-trimethylindan-4-yl)pyridine-3-carboxamide, 2-(difluoromethyl)-N-[(3R)-1,1,3-trimethylindan-4-yl]pyridine-3-carboxamide, 2-(difluoromethyl)-N-(3-ethyl-1,1-dimethyl-indan-4-yl)pyridine-3-carboxamide, 2-(difluoromethyl)-N-[(3R)-3-ethyl-1,1-dimethyl-indan-4-yl]pyridine-3-carboxamide, 2-(difluoromethyl)-N-(3-isobutyl-1,1-dimethyl-indan-4-yl)pyridine-3-carboxamide, 2-(difluoromethyl)-N-[(3R)-3-isobutyl-1,1-dimethyl-indan-4-yl]pyridine-3-carboxamide, fluindapyr, fluxapyroxad, benzovindiflupyr, isoflucypram, sedaxane, and (3) one fungicidal compound III from the class of strobilurines, wherein compound III is selected from the group consisting of: methyltetraprol, trifloxystrobin, picoxystrobin, pyraclostrobin, azoxystrobin, mandestrobin and metominostrobin.

Inventors:
ITIHARA DE OLIVEIRA FELIPE (BR)
SHINZATO ANDRE VINICIUS (BR)
GEWEGR MARKUS (DE)
DAESCHNER KLAUS (DE)
CRONE-QUINTERO MARIA ANGELICA (DE)
Application Number:
PCT/EP2021/057233
Publication Date:
October 07, 2021
Filing Date:
March 22, 2021
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BASF SE (DE)
International Classes:
A01N43/56; A01N37/36; A01N37/50; A01N43/40; A01N43/54; A01N43/713; A01N43/84; A01N45/02; A01N47/24; A01P3/00
Domestic Patent References:
WO2016187201A22016-11-24
WO2015197530A22015-12-30
WO2018162999A12018-09-13
WO2002015701A22002-02-28
WO1993007278A11993-04-15
WO1995034656A11995-12-21
WO2003018810A22003-03-06
WO2003052073A22003-06-26
WO2003018810A22003-03-06
Foreign References:
EP3162208A12017-05-03
EP3643175A12020-04-29
US20170325452A12017-11-16
CN103719108A2014-04-16
CN103719123A2014-04-16
US20190246640A12019-08-15
EP3162208A12017-05-03
EP0374753A21990-06-27
EP0427529A11991-05-15
EP0451878A11991-10-16
EP0392225A21990-10-17
Other References:
LISE NISTRUP JØRGENSEN ET AL: "Fungicide treatments affect yield and moisture content of grain and straw in winter wheat", CROP PROTECTION., vol. 21, no. 10, 1 December 2002 (2002-12-01), GB, pages 1023 - 1032, XP055716973, ISSN: 0261-2194, DOI: 10.1016/S0261-2194(02)00086-8
"Technical Monograph", May 2008, CROPLIFE INTERNATIONAL, article "Catalogue of pesticide formulation types and international coding system"
MOLLETGRUBE-MANN: "Formulation technology", 2001, WILEY VCH
KNOWLES: "Agrow Reports DS243", 2005, T&F INFORMA, article "New developments in crop protection product formulation"
MCCUTCHEON: "McCutcheon's Directories", vol. 1, 2008, GLEN ROCK, article "Emulsifiers & Detergents"
KNOWLES: "Agrow Reports DS256", 2006, T&F INFORMA, article "Adjuvants and additives"
PEST MANAGEMENT SCI, vol. 61, 2005, pages 246
WEED SCI, vol. 57, 2009, pages 108
AUSTRAL. J. AGRICULT. RES, vol. 58, 2007, pages 708
SCIENCE, vol. 316, 2007, pages 1185
R.S. COLBY: "Calculating synergistic and antagonistic responses of herbicide combinations", WEEDS, vol. 15, 1967, pages 20 - 22, XP001112961
Attorney, Agent or Firm:
BASF IP ASSOCIATION (DE)
Download PDF:
Claims:
Claims

1. Fungicidal mixtures comprising, as active components,

(1) fenpropimorph as compound I, and (2) one fungicidal compound II, wherein compound II is an inhibitor of succinate dehydrogenase and selected from the group consisting of:

2-(difluoromethyl)-N-(1,1-dimethyl-3-propyl-indan-4-yl)pyridine-3-carboxamide, 2-(difluoromethyl)-N-[(3R)-1,1-dimethyl-3-propyl-indan-4-yl]pyridine-3-carboxamide 2-(difluoromethyl)-N-(1 , 1 ,3-trimethylindan-4-yl)pyridine-3-carboxamide,

2-(difluoromethyl)-N-[(3R)-1,1,3-trimethylindan-4-yl]pyridine-3-carboxamide,

2-(difluoromethyl)-N-(3-ethyl-1,1-dimethyl-indan-4-yl)pyridine-3-carboxamide,

2-(difluoromethyl)-N-[(3R)-3-ethyl-1,1-dimethyl-indan-4-yl]pyridine-3-carboxamide,

2-(difluoromethyl)-N-(3-isobutyl-1,1-dimethyl-indan-4-yl)pyridine-3-carboxamide, 2-(difluoromethyl)-N-[(3R)-3-isobutyl-1,1-dimethyl-indan-4-yl]pyridine-3-carboxamide, fluindapyr, fluxapyroxad, benzovindiflupyr, isoflucypram, sedaxane, and

(3) one fungicidal compound III from the class of strobilurines, wherein compound III is selected from the group consisting of: methyltetraprol, trifloxystrobin, picoxystrobin, pyraclostrobin, azoxystrobin, mandestrobin and metominostrobin.

2. The mixture as claimed in claim 1 , which is selected from:

3. The mixture as claimed in claim 1 or 2 which is selected from:

4. The mixture as claimed in any of claims 1 to 3 which is selected from:

5. The mixture as claimed in any of claims 1 to 4 which is selected from: 6. The mixture as claimed in any of claims 1 to 5 which is:

7. A pesticidal composition, comprising a liquid or solid carrier and a mixture as defined in any of claims 1 to 6. 8. An use of the mixture as defined in any of the claims 1 to 6 or of the pesticidal composition as defined in claim 7 for controlling phytopathogenic harmful fungi.

9. The use as defined in claim 8 for controlling phytopathogenic harmful fungi on soybean.

10. The use as defined in claim 8 and 9 for controlling Phakopsora pachyrhizi and P. meibomi- ae (soybean rust).

11. A method for controlling phytopathogenic pests, wherein the pest, their habitat, breeding grounds, their locus or the plants to be protected against pest attack, the soil or plant prop agation material are treated with an effective amount of the mixture as defined in any of claims 1 to 6.

12. A method as claimed in claim 11, wherein the mixture as defined in any of claims 1 to 6 is applied in an amount of from 0.01 g to 10 kg per 100 kg of plant propagation materials.

13. A method as claimed in any of claims 11 to 12, wherein the mixture as defined in any of claims 1 to 6 are applied simultaneously, that is jointly or separately, or in succession.

Description:
Ternary mixtures containing fenpropimorph, succinate dehydrogenase inhibitors and strobilurins

Description

The present invention relates to fungicidal mixtures comprising as active components,

(1) fenpropimorph as compound I, and

(2) one fungicidal compound II, wherein compound II is an inhibitor of succinate dehydrogenase and selected from the group consisting of:

2-(difluoromethyl)-N-(1,1-dimethyl-3-propyl-indan-4-yl)py ridine-3-carboxamide,

2-(difluoromethyl)-N-[(3R)-1,1-dimethyl-3-propyl-indan-4- yl]pyridine-3-carboxamide

2-(difluoromethyl)-N-(1 , 1 ,3-trimethylindan-4-yl)pyridine-3-carboxamide,

2-(difluoromethyl)-N-[(3R)-1,1,3-trimethylindan-4-yl]pyri dine-3-carboxamide,

2-(difluoromethyl)-N-(3-ethyl-1,1-dimethyl-indan-4-yl)pyr idine-3-carboxamide,

2-(difluoromethyl)-N-[(3R)-3-ethyl-1,1-dimethyl-indan-4-y l]pyridine-3-carboxamide,

2-(difluoromethyl)-N-(3-isobutyl-1,1-dimethyl-indan-4-yl) pyridine-3-carboxamide,

2-(difluoromethyl)-N-[(3R)-3-isobutyl-1,1-dimethyl-indan- 4-yl]pyridine-3-carboxamide, fluindapyr, fluxapyroxad, benzovindiflupyr, isoflucypram, sedaxane, and

(3) one fungicidal compound III from the class of strobilurines, wherein compound III is selected from the group consisting of: methyltetraprol, trifloxystrobin, picoxystrobin, pyraclostrobin, azoxystrobin, mandestrobin and metominostrobin.

Moreover, the invention relates to an use of the mixture for controlling phytopathogenic harmful fungi and to a method for controlling phytopathogenic pests, wherein the pest, their habitat, breeding grounds, their locus or the plants to be protected against pest attack, the soil or plant propagation material are treated with an effective amount of the mixture.

The term "plant propagation material" is to be understood to denote all the generative parts of the plant such as seeds and vegetative plant material such as cuttings and tubers (e. g. pota toes), which can be used for the multiplication of the plant. This includes seeds, roots, fruits, tubers, bulbs, rhizomes, shoots, sprouts and other parts of plants, including seedlings and young plants, which are to be transplanted after germination or after emergence from soil. These young plants may also be protected before transplantation by a total or partial treatment by immersion or pouring. In a particular preferred embodiment, the term propagation material denotes seeds.

Compounds I, II and III as well as their pesticidal action and methods for producing them are generally known (cf.: http://www.alanwood.net/pesticides/); these substances are commercially available. 4-[[6-[2-(2,4-difluorophenyl)-1,1-difluoro-2-hydroxy-3-(5-su lfanyl-1,2,4-triazol-1- yl)propyl]-3-pyridyl]oxy]benzonitrile is known from WO 2016/187201. 2-(difluoromethyl)-N- (1 , 1 ,3-trimethylindan-4-yl)pyridine-3-carboxamide, 2-(difluoromethyl)-N-[(3R)-1 ,1,3- trimethylindan-4-yl]pyridine-3-carboxamide, 2-(difluoromethyl)-N-(3-ethyl-1,1-dimethyl-indan-4- yl)pyridine-3-carboxamide, 2-(difluoromethyl)-N-[(3R)-3-ethyl-1,1-dimethyl-indan-4-yl]p yridine-3- carboxamide, 2-(difluoromethyl)-N-(1 , 1 -dimethyl-3-propyl-indan-4-yl)pyridine-3-carboxamide, 2- (difluoromethyl)-N-[(3R)-1,1-dimethyl-3-propyl-indan-4-yl]py ridine-3-carboxamide, 2- (difluoromethyl)-N-(3-isobutyl-1,1-dimethyl-indan-4-yl)pyrid ine-3-carboxamide and 2- (difluoromethyl)-N-[(3R)-3-isobutyl-1,1-dimethyl-indan-4-yl] pyridine-3-carboxamide are known Ternary mixtures of fenpropimorph are known from EP-3162208, WO 2018/162999 and IP- COM000244894D.

One typical problem arising in the field of pest control lies in the need to reduce the dosage rates of the active ingredient in order to reduce or avoid unfavorable environmental or toxicolog ical effects whilst still allowing effective pest control.

In regard to the present invention the term pests embrace harmful fungi and animal pests.

Another problem encountered concerns the need to have available pest control agents which are effective against a broad spectrum of harmful fungi and harmful animal pests.

There also exists the need for pest control agents that combine knock-down activity with pro longed control, that is, fast action with long lasting action.

Another difficulty in relation to the use of pesticides is that the repeated and exclusive applica tion of an individual pesticidal compound leads in many cases to a rapid selection of pests, that means animal pests, and harmful fungi, which have developed natural or adapted resistance against the active compound in question. Therefore, there is a need for pest control agents that help prevent or overcome resistance.

Especially for controlling fungicidal diseases in soybeans is a challenge and already now, more than one active ingredient is needed to achieve sufficient activity. It is expected, that in future all products will consist of at least three active ingredients (ternary mixtures).

Fenpropimorph is known since many years. However, the compound was just recently intro duced in the fungicidal soybean market. It has been surprisingly found, that new ternary mix tures of fenpropimorph with selected other compounds are synergistically highly active. Be cause of this and the limited number of highly active compounds, it is expected, that fenpropi morph will become a key partner of other active ingredients in ternary mixtures.

It was therefore an object of the present invention to provide pesticidal mixtures which solve the problems of reducing the dosage rate and / or enhancing the spectrum of activity and / or com bining knock-down activity with prolonged control and / or to resistance management and/or promoting the health of plants.

We have found that this object is in part or in whole achieved by the fungicidal mixtures as de fined above.

Especially, it has been found that the mixtures as defined in the outset show markedly en hanced action against pests compared to the control rates that are possible with the individual compounds and/or is suitable for improving the health of plants when applied to plants, parts of plants, seeds, or at their locus of growth. Especially high activity was shown on soybean.

It has been found that the action of the inventive mixtures comprising compound I, compound II and compound III goes far beyond the fungicidal and/or plant health improving action of the ac tive compounds present in the mixture alone (synergistic action).

Moreover, we have found that simultaneous, that is joint or separate, application of the com pound I, the compound II and the compound III or successive application of the compound I, the compound II and the compound III allows enhanced control of harmful fungi, compared to the control rates that are possible with the individual compounds (synergistic mixtures). Moreover, we have found that simultaneous, that is joint or separate, application of the com pound I, the compound II and the compound III or successive application of the compound I ,the compound II and the compound III provides enhanced plant health effects compared to the plant health effects that are possible with the individual compounds. The ratio by weight of compound I and compound II in ternary mixtures is from 500:1 to 1:500, preferably from 100:1 to 1:100 more preferably from 50:1 to 1:50, most preferably from 20:1 to 1:20, including also ratios from 10:1 to 1:10, 1:5 to 5:1, or 1:1. The ratio by weight of compound I and compound III in ternary mixtures is from 500:1 to 1:500, preferably from 100:1 to 1:100 more preferably from 50:1 to 1:50, most preferably from 20:1 to 1:20, including also ratios from 10:1 to 1:10, 1:5 to 5:1, or 1:1.

All above-referred mixtures are herein below referred to as “inventive mixtures”.

The present invention relates to synergistic three way mixtures set forth in the table below, comprising three components, as the case may be:

The inventive mixtures can be converted into customary types of agrochemical compositions, e. g. solutions, emulsions, suspensions, dusts, powders, pastes, granules, pressings, capsules, and mixtures thereof. Examples for composition types are suspensions (e.g. SC, OD, FS), emulsifiable concentrates (e.g. EC), emulsions (e.g. EW, EO, ES, ME), capsules (e.g. CS, ZC), pastes, pastilles, wetable powders or dusts (e.g. WP, SP, WS, DP, DS), pressings (e.g. BR, TB, DT), granules (e.g. WG, SG, GR, FG, GG, MG), insecticidal articles (e.g. LN), as well as gel formulations for the treatment of plant propagation materials such as seeds (e.g. GF). These and further compositions types are defined in the “Catalogue of pesticide formulation types and international coding system”, Technical Monograph No. 2, 6 th Ed. May 2008, CropLife Interna tional.

The compositions are prepared in a known manner, such as described by Mollet and Grube- mann, Formulation technology, Wiley VCH, Weinheim, 2001; or Knowles, New developments in crop protection product formulation, Agrow Reports DS243, T&F Informa, London, 2005.

Suitable auxiliaries are solvents, liquid carriers, solid carriers or fillers, surfactants, dispersants, emulsifiers, wetters, adjuvants, solubilizers, penetration enhancers, protective colloids, adhe sion agents, thickeners, humectants, repellents, attractants, feeding stimulants, compatibilizers, bactericides, anti-freezing agents, anti-foaming agents, colorants, tackifiers and binders.

Suitable solvents and liquid carriers are water and organic solvents, such as mineral oil frac tions of medium to high boiling point, e.g. kerosene, diesel oil; oils of vegetable or animal origin; aliphatic, cyclic and aromatic hydrocarbons, e. g. toluene, paraffin, tetrahydronaphthalene, al kylated naphthalenes; alcohols, e.g. ethanol, propanol, butanol, benzylalcohol, cyclohexanol; glycols; DMSO; ketones, e.g. cyclohexanone; esters, e.g. lactates, carbonates, fatty acid esters, gamma-butyrolactone; fatty acids; phosphonates; amines; amides, e.g. N-methylpyrrolidone, fatty acid dimethylamides; and mixtures thereof.

Suitable solid carriers or fillers are mineral earths, e.g. silicates, silica gels, talc, kaolins, lime stone, lime, chalk, clays, dolomite, diatomaceous earth, bentonite, calcium sulfate, magnesium sulfate, magnesium oxide; polysaccharides, e.g. cellulose, starch; fertilizers, e.g. ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas; products of vegetable origin, e.g. ce real meal, tree bark meal, wood meal, nutshell meal, and mixtures thereof.

Suitable surfactants are surface-active compounds, such as anionic, cationic, nonionic and am photeric surfactants, block polymers, polyelectrolytes, and mixtures thereof. Such surfactants can be used as emulsifier, dispersant, solubilizer, wetter, penetration enhancer, protective col loid, or adjuvant. Examples of surfactants are listed in McCutcheon’s, Vol.1 : Emulsifiers & De tergents, McCutcheon’s Directories, Glen Rock, USA, 2008 (International Ed. or North American Ed.).

Suitable anionic surfactants are alkali, alkaline earth or ammonium salts of sulfonates, sulfates, phosphates, carboxylates, and mixtures thereof. Examples of sulfonates are alkylarylsulfonates, diphenylsulfonates, alpha-olefin sulfonates, lignine sulfonates, sulfonates of fatty acids and oils, sulfonates of ethoxylated alkylphenols, sulfonates of alkoxylated arylphenols, sulfonates of con densed naphthalenes, sulfonates of dodecyl- and tridecylbenzenes, sulfonates of naphthalenes and alkylnaphthalenes, sulfosuccinates or sulfosuccinamates. Examples of sulfates are sulfates of fatty acids and oils, of ethoxylated alkylphenols, of alcohols, of ethoxylated alcohols, or of fatty acid esters. Examples of phosphates are phosphate esters. Examples of carboxylates are alkyl carboxylates, and carboxylated alcohol or alkylphenol ethoxylates.

Suitable nonionic surfactants are alkoxylates, N-subsituted fatty acid amides, amine oxides, esters, sugar-based surfactants, polymeric surfactants, and mixtures thereof. Examples of alkoxylates are compounds such as alcohols, alkylphenols, amines, amides, arylphenols, fatty acids or fatty acid esters which have been alkoxylated with 1 to 50 equivalents. Ethylene oxide and/or propylene oxide may be employed for the alkoxylation, preferably ethylene oxide. Exam ples of N-substituted fatty acid amides are fatty acid glucamides or fatty acid alkanolamides. Examples of esters are fatty acid esters, glycerol esters or monoglycerides. Examples of sugar- based surfactants are sorbitans, ethoxylated sorbitans, sucrose and glucose esters or al- kylpolyglucosides. Examples of polymeric surfactants are home- or copolymers of vinylpyrroli- done, vinylalcohols, or vinylacetate.

Suitable cationic surfactants are quaternary surfactants, for example quaternary ammonium compounds with one or two hydrophobic groups, or salts of long-chain primary amines. Suitable amphoteric surfactants are alkylbetains and imidazolines. Suitable block polymers are block polymers of the A-B or A-B-A type comprising blocks of polyethylene oxide and polypropylene oxide, or of the A-B-C type comprising alkanol, polyethylene oxide and polypropylene oxide. Suitable polyelectrolytes are polyacids or polybases. Examples of polyacids are alkali salts of polyacrylic acid or polyacid comb polymers. Examples of polybases are polyvinylamines or pol- yethyleneamines.

Suitable adjuvants are compounds, which have a neglectable or even no pesticidal activity themselves, and which improve the biological performance of the inventive mixtures on the tar get. Examples are surfactants, mineral or vegetable oils, and other auxilaries. Further examples are listed by Knowles, Adjuvants and additives, Agrow Reports DS256, T&F Informa UK, 2006, chapter 5.

Suitable thickeners are polysaccharides (e.g. xanthan gum, carboxymethylcellulose), inorganic clays (organically modified or unmodified), polycarboxylates, and silicates.

Suitable bactericides are bronopol and isothiazolinone derivatives such as alkylisothiazolinones and benzisothiazolinones.

Suitable anti-freezing agents are ethylene glycol, propylene glycol, urea and glycerin.

Suitable anti-foaming agents are silicones, long chain alcohols, and salts of fatty acids.

Suitable colorants (e.g. in red, blue, or green) are pigments of low water solubility and water- soluble dyes. Examples are inorganic colorants (e.g. iron oxide, titan oxide, iron hexacyanofer- rate) and organic colorants (e.g. alizarin-, azo- and phthalocyanine colorants).

Suitable tackifiers or binders are polyvinylpyrrolidons, polyvinylacetates, polyvinyl alcohols, pol yacrylates, biological or synthetic waxes, and cellulose ethers.

Examples for composition types and their preparation are: i) Water-soluble concentrates (SL, LS)

10-60 wt% of an inventive mixture and 5-15 wt% wetting agent (e.g. alcohol alkoxylates) are dissolved in water and/or in a water-soluble solvent (e.g. alcohols) ad 100 wt%. The active sub stance dissolves upon dilution with water. ii) Dispersible concentrates (DC)

5-25 wt% of an inventive mixture and 1-10 wt% dispersant (e. g. polyvinylpyrrolidone) are dissolved in organic solvent (e.g. cyclohexanone) ad 100 wt%. Dilution with water gives a dis persion. iii) Emulsifiable concentrates (EC)

15-70 wt% of an inventive mixture and 5-10 wt% emulsifiers (e.g. calcium dodecylben- zenesulfonate and castor oil ethoxylate) are dissolved in water-insoluble organic solvent (e.g. aromatic hydrocarbon) ad 100 wt%. Dilution with water gives an emulsion. iv) Emulsions (EW, EO, ES) 5-40 wt% of an inventive mixture and 1-10 wt% emulsifiers (e.g. calcium dodecylbenzene- sulfonate and castor oil ethoxylate) are dissolved in 20-40 wt% water-insoluble organic solvent (e.g. aromatic hydrocarbon). This mixture is introduced into water ad 100 wt% by means of an emulsifying machine and made into a homogeneous emulsion. Dilution with water gives an emulsion. v) Suspensions (SC, OD, FS)

In an agitated ball mill, 20-60 wt% of an inventive mixture are comminuted with addition of 2- 10 wt% dispersants and wetting agents (e.g. sodium lignosulfonate and alcohol ethoxylate), 0.1- 2 wt% thickener (e.g. xanthan gum) and water ad 100 wt% to give a fine active substance sus pension. Dilution with water gives a stable suspension of the active substance. For FS type composition up to 40 wt% binder (e.g. polyvinylalcohol) is added. vi) Water-dispersible granules and water-soluble granules (WG, SG)

50-80 wt% of an inventive mixture are ground finely with addition of dispersants and wetting agents (e.g. sodium lignosulfonate and alcohol ethoxylate) ad 100 wt% and prepared as water- dispersible or water-soluble granules by means of technical appliances (e. g. extrusion, spray tower, fluidized bed). Dilution with water gives a stable dispersion or solution of the active sub stance. vii) Water-dispersible powders and water-soluble powders (WP, SP, WS)

50-80 wt% of an inventive mixture are ground in a rotor-stator mill with addition of 1-5 wt% dispersants (e.g. sodium lignosulfonate), 1-3 wt% wetting agents (e.g. alcohol ethoxylate) and solid carrier (e.g. silica gel) ad 100 wt%. Dilution with water gives a stable dispersion or solution of the active substance. viii) Gel (GW, GF)

In an agitated ball mill, 5-25 wt% of an inventive mixture are comminuted with addition of 3- 10 wt% dispersants (e.g. sodium lignosulfonate), 1-5 wt% thickener (e.g. carboxy- methylcellulose) and water ad 100 wt% to give a fine suspension of the active substance. Dilu tion with water gives a stable suspension of the active substance. ix) Microemulsion (ME)

5-20 wt% of an inventive mixture are added to 5-30 wt% organic solvent blend (e.g. fatty ac id dimethylamide and cyclohexanone), 10-25 wt% surfactant blend (e.g. alcohol ethoxylate and arylphenol ethoxylate), and water ad 100 %. This mixture is stirred for 1 h to produce spontane ously a thermodynamicallystable microemulsion. x) Microcapsules (CS)

An oil phase comprising 5-50 wt% of an inventive mixture, 0-40 wt% water insoluble organic solvent (e.g. aromatic hydrocarbon), 2-15 wt% acrylic monomers (e.g. methylmethacrylate, methacrylic acid and a di- or triacrylate) are dispersed into an aqueous solution of a protective colloid (e.g. polyvinyl alcohol). Radical polymerization initiated by a radical initiator results in the formation of poly(meth)acrylate microcapsules. Alternatively, an oil phase comprising 5-50 wt% of an inventive mixture according to the invention, 0-40 wt% water insoluble organic solvent (e.g. aromatic hydrocarbon), and an isocyanate monomer (e.g. diphenylmethene-4,4’- diisocyanatae) are dispersed into an aqueous solution of a protective colloid (e.g. polyvinyl al cohol). The addition of a polyamine (e.g. hexamethylenediamine) results in the formation of pol- yurea microcapsules. The monomers amount to 1-10 wt%. The wt% relate to the total CS com position. xi) Dustable powders (DP, DS)

1-10 wt% of an inventive mixture are ground finely and mixed intimately with solid carrier (e.g. finely divided kaolin) ad 100 wt%. xii) Granules (GR, FG)

0.5-30 wt% of an inventive mixture is ground finely and associated with solid carrier (e.g. sil icate) ad 100 wt%. Granulation is achieved by extrusion, spray-drying or fluidized bed. xiii) Ultra-low volume liquids (UL)

1-50 wt% of an inventive mixture are dissolved in organic solvent (e.g. aromatic hydro carbon) ad 100 wt%.

The compositions types i) to xiii) may optionally comprise further auxiliaries, such as 0.1-1 wt% bactericides, 5-15 wt% anti-freezing agents, 0.1-1 wt% anti-foaming agents, and 0.1-1 wt% col orants.

The resulting agrochemical compositions generally comprise between 0.01 and 95%, preferably between 0.1 and 90%, and in particular between 0.5 and 75%, by weight of active substance. The active substances are employed in a purity of from 90% to 100%, preferably from 95% to 100% (according to NMR spectrum).

Solutions for seed treatment (LS), Suspoemulsions (SE), flowable concentrates (FS), powders for dry treatment (DS), water-dispersible powders for slurry treatment (WS), water-soluble pow ders (SS), emulsions (ES), emulsifiable concentrates (EC) and gels (GF) are usually employed for the purposes of treatment of plant propagation materials, particularly seeds. The composi tions in question give, after two-to-tenfold dilution, active substance concentrations of from 0.01 to 60% by weight, preferably from 0.1 to 40%, in the ready-to-use preparations. Application can be carried out before or during sowing. Methods for applying the inventive mixtures and compo sitions thereof, respectively, on to plant propagation material, especially seeds include dressing, coating, pelleting, dusting, soaking and in-furrow application methods of the propagation mate rial. Preferably, the inventive mixtures or the compositions thereof, respectively, are applied on to the plant propagation material by a method such that germination is not induced, e. g. by seed dressing, pelleting, coating and dusting.

When employed in plant protection, the amounts of active substances applied are, depending on the kind of effect desired, from 0.001 to 2 kg per ha, preferably from 0.005 to 2 kg per ha, more preferably from 0.01 to 1.0 kg per ha, and in particular from 0.05 to 0.75 kg per ha.

In treatment of plant propagation materials such as seeds, e. g. by dusting, coating or drenching seed, amounts of active substance of from 0.01 -10kg, preferably from 0.1-1000 g, more prefer ably from 1-100 g per 100 kilogram of plant propagation material (preferably seeds) are general ly required.

When used in the protection of materials or stored products, the amount of active substance applied depends on the kind of application area and on the desired effect. Amounts customarily applied in the protection of materials are 0.001 g to 2 kg, preferably 0.005 g to 1 kg, of active substance per cubic meter of treated material.

Various types of oils, wetters, adjuvants, fertilizer, or micronutrients, and further pesticides (e.g. herbicides, insecticides, fungicides, growth regulators, safeners) may be added to the active substances or the compositions comprising them as premix or, if appropriate not until immedi ately prior to use (tank mix). These agents can be admixed with the compositions according to the invention in a weight ratio of 1 :100 to 100:1, preferably 1 :10 to 10:1.

The user applies the composition according to the invention usually from a predosage device, a knapsack sprayer, a spray tank, a spray plane, or an irrigation system. Usually, the agrochemi cal composition is made up with water, buffer, and/or further auxiliaries to the desired applica tion concentration and the ready-to-use spray liquor or the agrochemical composition according to the invention is thus obtained. Usually, 20 to 2000 liters, preferably 50 to 400 liters, of the ready-to-use spray liquor are applied per hectare of agricultural useful area.

According to one embodiment, individual components of the composition according to the in vention such as parts of a kit or parts of a binary mixture may be mixed by the user himself in a spray tank or any other kind of vessel used for applications (e. g. seed treater drums, seed pel leting machinery, knapsack sprayer) and further auxiliaries may be added, if appropriate.

Consequently, one embodiment of the invention is a kit for preparing a usable pesticidal com position, the kit comprising a) a composition comprising component 1) as defined herein and at least one auxiliary; and b) a composition comprising component 2) as defined herein and at least one auxiliary; and optionally c) a composition comprising at least one auxiliary and option ally a further active component 3) as defined herein.

As said above, the present invention comprises an use of the mixture for controlling phytopath- ogenic harmful fungi and to a method for controlling phytopathogenic pests, wherein the pest, their habitat, breeding grounds, their locus or the plants to be protected against pest attack, the soil or plant propagation material are treated with an effective amount of the mixture.

Advantageously, the inventive mixtures are suitable for controlling the following fungal plant diseases:

Albugo spp. (white rust) on ornamentals, vegetables (e. g. A. Candida) and sunflowers (e. g. A. tragopogonis); Alternaria spp. (Alternaria leaf spot) on vegetables (e.g. A. dauci or A. porri), oilseed rape (A. brassicicola or brassicae), sugar beets (A. tenuis), fruits (e.g. A. grandis), rice, soybeans, potatoes and tomatoes (e. g. A. solani, A. grandis or A. alternata), tomatoes (e. g. A. solani or A. alternata) and wheat (e.g. A. triticina); Aphanomyces spp. on sugar beets and vege tables; Ascochyta spp. on cereals and vegetables, e. g. A. tritici (anthracnose) on wheat and A. hordei on barley; Aureobasidium zeae (syn. Kapatiella zeae) on corn; Bipolaris and Drechslera spp. (teleomorph: Cochliobolus spp.), e. g. Southern leaf blight (D. maydis) or Northern leaf blight (B. zeicola) on corn, e. g. spot blotch (B. sorokiniana) on cereals and e. g. B. oryzae on rice and turfs; Blumeria (formerly Erysiphe) graminis (powdery mildew) on cereals (e. g. on wheat or barley); Botrytis cinerea (teleomorph: Botryotinia fuckeliana: grey mold) on fruits and berries (e. g. strawberries), vegetables (e. g. lettuce, carrots, celery and cabbages); B. squamo sa or B. allii on onion family), oilseed rape, ornamentals (e.g. B eliptica), vines, forestry plants and wheat; Bremia lactucae (downy mildew) on lettuce; Ceratocystis (syn. Ophiostoma) spp.

(rot or wilt) on broad-leaved trees and evergreens, e. g. C. ulmi (Dutch elm disease) on elms; Cercospora spp. (Cercospora leaf spots) on corn (e. g. Gray leaf spot: C. zeae-maydis), rice, sugar beets (e. g. C. beticola), sugar cane, vegetables, coffee, soybeans (e. g. C. sojina or C. kikuchii) and rice; Cladobotryum (syn. Dactylium) spp. (e.g. C. mycophilum (formerly Dactylium dendroides, teleomorph: Nectria albertinii, Nectria rosella syn. Hypomyces rosellus) on mushrooms; Cladosporium spp. on tomatoes (e. g. C. fulvum: leaf mold) and cere- als, e. g. C. herbarum (black ear) on wheat; Claviceps purpurea (ergot) on cereals; Cochliobo- lus (anamorph: Helminthosporium of Bipolaris) spp. (leaf spots) on corn (C. carbonum), cereals (e. g. C. sativus, anamorph: B. sorokiniana) and rice (e. g. C. miyabeanus, anamorph: H. ory- zae); Colletotrichum (teleomorph: Glomerella) spp. (anthracnose) on cotton (e. g. C. gossypii), corn (e. g. C. graminicola: Anthracnose stalk rot), soft fruits, potatoes (e. g. C. coccodes: black dot), beans (e. g. C. lindemuthianum), soybeans (e. g. C. truncatum or C. gloeosporioides), vegetables (e.g. C. lagenarium or C. capsici), fruits (e.g. C. acutatum), coffee (e.g. C. coffeanum or C. kahawae) and C. gloeosporioides on various crops; Corticium spp., e. g. C. sasakii (sheath blight) on rice; Corynespora cassiicola (leaf spots) on soybeans and ornamentals; Cy- cloconium spp., e. g. C. oleaginum on olive trees; Cylindrocarpon spp. (e. g. fruit tree canker or young vine decline, teleomorph: Nectria or Neonectria spp.) on fruit trees, vines (e. g. C. lirio- dendri, teleomorph: Neonectria liriodendri: Black Foot Disease) and ornamentals; Dematophora (teleomorph: Rosellinia) necatrix (root and stem rot) on soybeans; Diaporthe spp., e. g. D. phaseolorum (damping off) on soybeans; Drechslera (syn. Helminthosporium, teleomorph: Pyr- enophora) spp. on corn, cereals, such as barley (e. g. D. teres, net blotch) and wheat (e. g. D. tritici-repentis: tan spot), rice and turf; Esca (dieback, apoplexy) on vines, caused by Formiti- poria (syn. Phellinus) punctata, F. mediterranea, Phaeomoniella chlamydospora (formerly Phaeoacremonium chlamydosporum), Phaeoacremonium aleophilum and/or Botryosphaeria obtusa; Elsinoe spp. on pome fruits (E. pyri), soft fruits (E. veneta: anthracnose) and vines (E. ampelina: anthracnose); Entyloma oryzae (leaf smut) on rice; Epicoccum spp. (black mold) on wheat; Erysiphe spp. (powdery mildew) on sugar beets (E. betae), vegetables (e. g. E. pisi), such as cucurbits (e. g. E. cichoracearum), cabbages, oilseed rape (e. g. E. cruciferarum); Eu- typa lata (Eutypa canker or dieback, anamorph: Cytosporina lata, syn. Libertella blepharis) on fruit trees, vines and ornamental woods; Exserohilum (syn. Helminthosporium) spp. on corn (e. g. E. turcicum); Fusarium (teleomorph: Gibberella) spp. (wilt, root or stem rot) on various plants, such as F. graminearum or F. culmorum (root rot, scab or head blight) on cereals (e. g. wheat or barley), F. oxysporum on tomatoes, F. solani (f. sp. glycines now syn. F. virguliforme ) and F. tucumaniae and F. brasiliense each causing sudden death syndrome on soybeans, and F. verticillioides on corn; Gaeumannomyces graminis (take-all) on cereals (e. g. wheat or barley) and corn; Gibberella spp. on cereals (e. g. G. zeae) and rice (e. g. G. fujikuroi: Bakanae dis ease); Glomerella cingulata on vines, pome fruits and other plants and G. gossypii on cotton; Grainstaining complex on rice; Guignardia bidwellii (black rot) on vines; Gymnosporangium spp. on rosaceous plants and junipers, e. g. G. sabinae (rust) on pears; Helminthosporium spp. (syn. Drechslera, teleomorph: Cochliobolus) on corn, cereals, potatoes and rice; Hemileia spp., e. g. H. vastatrix (coffee leaf rust) on coffee; Isariopsis clavispora (syn. Cladosporium vitis) on vines; Macrophomina phaseolina (syn. phaseoli) (root and stem rot) on soybeans and cotton; Micro- dochium (syn. Fusarium) nivale (pink snow mold) on cereals (e. g. wheat or barley); Micro- sphaera diffusa (powdery mildew) on soybeans; Monilinia spp., e. g. M. laxa, M. fructicola and M. fructigena (syn. Monilia spp.: bloom and twig blight, brown rot) on stone fruits and other ro saceous plants; Mycosphaerella spp. on cereals, bananas, soft fruits and ground nuts, such as e. g. M. graminicola (anamorph: Zymoseptoria tritici formerly Septoria tritici: Septoria blotch) on wheat or M. fijiensis (syn. Pseudocercospora fijiensis: black Sigatoka disease) and M. musicola on bananas, M. arachidicola (syn. M. arachidis or Cercospora arachidis), M. berkeleyi on pea nuts, M. pisi on peas and M. brassiciola on brassicas; Peronospora spp. (downy mildew) on cabbage (e. g. P. brassicae), oilseed rape (e. g. P. parasitica), onions (e. g. P. destructor), to bacco (P. tabacina) and soybeans (e. g. P. manshurica); Phakopsora pachyrhizi and P. meibo- miae (soybean rust) on soybeans; Phialophora spp. e. g. on vines (e. g. P. tracheiphila and P. tetraspora) and soybeans (e. g. P. gregata: stem rot); Phoma lingam (syn. Leptosphaeria bi- globosa and L. maculans: root and stem rot) on oilseed rape and cabbage, P. betae (root rot, leaf spot and damping-off) on sugar beets and P. zeae-maydis (syn. Phyllostica zeae) on corn; Phomopsis spp. on sunflowers, vines (e. g. P. viticola: can and leaf spot) and soybeans (e. g. stem rot: P. phaseoli, teleomorph: Diaporthe phaseolorum); Physoderma maydis (brown spots) on corn; Phytophthora spp. (wilt, root, leaf, fruit and stem root) on various plants, such as papri ka and cucurbits (e. g. P. capsici), soybeans (e. g. P. megasperma, syn. P. sojae), potatoes and tomatoes (e. g. P. infestans: late blight) and broad-leaved trees (e. g. P. ramorum: sudden oak death); Plasmodiophora brassicae (club root) on cabbage, oilseed rape, radish and other plants; Plasmopara spp., e. g. P. viticola (grapevine downy mildew) on vines and P. halstedii on sun flowers; Podosphaera spp. (powdery mildew) on rosaceous plants, hop, pome and soft fruits (e. g. P. leucotricha on apples) and curcurbits (P. xanthii); Polymyxa spp., e. g. on cereals, such as barley and wheat (P. graminis) and sugar beets (P. betae) and thereby transmitted viral dis eases; Pseudocercosporella herpotrichoides (syn. Oculimacula yallundae, O. acuformis: eye- spot, teleomorph: Tapesia yallundae) on cereals, e. g. wheat or barley; Pseudoperonospora (downy mildew) on various plants, e. g. P. cubensis on cucurbits or P. humili on hop; Pseudo- pezicula tracheiphila (red fire disease or .rotbrenner’, anamorph: Phialophora) on vines; Puccin- ia spp. (rusts) on various plants, e. g. P. triticina (brown or leaf rust), P. striiformis (stripe or yel low rust), P. hordei (dwarf rust), P. graminis (stem or black rust) or P. recondita (brown or leaf rust) on cereals, such as e. g. wheat, barley or rye, P. kuehnii (orange rust) on sugar cane and P. asparagi on asparagus; Pyrenopeziza spp., e.g. P. brassicae on oilseed rape; Pyrenophora (anamorph: Drechslera) tritici-repentis (tan spot) on wheat or P. teres (net blotch) on barley; Pyricularia spp., e. g. P. oryzae (teleomorph: Magnaporthe grisea: rice blast) on rice and P. grisea on turf and cereals; Pythium spp. (damping-off) on turf, rice, corn, wheat, cotton, oilseed rape, sunflowers, soybeans, sugar beets, vegetables and various other plants (e. g. P. ultimum or P. aphanidermatum) and P. oligandrum on mushrooms; Ramularia spp., e. g. R. collo-cygni (Ramularia leaf spots, Physiological leaf spots) on barley and R. beticola on sugar beets; Rhi- zoctonia spp. on cotton, rice, potatoes, turf, corn, oilseed rape, potatoes, sugar beets, vegeta bles and various other plants, e. g. R. solani (root and stem rot) on soybeans, R. solani (sheath blight) on rice or R. cerealis (Rhizoctonia spring blight) on wheat or barley; Rhizopus stolonifer (black mold, soft rot) on strawberries, carrots, cabbage, vines and tomatoes; Rhynchosporium secalis and R. commune (scald) on barley, rye and triticale; Sarocladium oryzae and S. attenua- tum (sheath rot) on rice; Sclerotinia spp. (stem rot or white mold) on vegetables (S. minor and S. sclerotiorum) and field crops, such as oilseed rape, sunflowers (e. g. S. sclerotiorum) and soy beans, S. rolfsii (syn. Athelia rolfsii) on soybeans, peanut, vegetables, corn, cereals and orna mentals; Septoria spp. on various plants, e. g. S. glycines (brown spot) on soybeans, S. tritici (syn. Zymoseptoria tritici, Septoria blotch) on wheat and S. (syn. Stagonospora) nodorum (Stagonospora blotch) on cereals; Uncinula (syn. Erysiphe) necator (powdery mildew, ana morph: Oidium tuckeri) on vines; Setosphaeria spp. (leaf blight) on corn (e. g. S. turcicum, syn. Helminthosporium turcicum) and turf; Sphacelotheca spp. (smut) on corn, (e. g. S. reiliana, syn. Ustilago reiliana: head smut), sorghum und sugar cane; Sphaerotheca fuliginea (syn. Podo sphaera xanthii: powdery mildew) on cucurbits; Spongospora subterranea (powdery scab) on potatoes and thereby transmitted viral diseases; Stagonospora spp. on cereals, e. g. S. no dorum (Stagonospora blotch, teleomorph: Leptosphaeria [syn. Phaeosphaeria] nodorum, syn. Septoria nodorum) on wheat; Synchytrium endobioticum on potatoes (potato wart disease); Ta- phrina spp., e. g. T. deformans (leaf curl disease) on peaches and T. pruni (plum pocket) on plums; Thielaviopsis spp. (black root rot) on tobacco, pome fruits, vegetables, soybeans and cotton, e. g. T. basicola (syn. Chalara elegans); Tilletia spp. (common bunt or stinking smut) on cereals, such as e. g. T. tritici (syn. T. caries, wheat bunt) and T. controversa (dwarf bunt) on wheat; Trichoderma harzianum on mushrooms; Typhula incarnata (grey snow mold) on barley or wheat; Urocystis spp., e. g. U. occulta (stem smut) on rye; Uromyces spp. (rust) on vege tables, such as beans (e. g. U. appendiculatus, syn. U. phaseoli), sugar beets (e. g. U. betae or U. beticola) and on pulses (e.g. U. vignae, U. pisi, U. viciae-fabae and U. fabae); Ustilago spp. (loose smut) on cereals (e. g. U. nuda and U. avaenae), corn (e. g. U. maydis: corn smut) and sugar cane; Venturia spp. (scab) on apples (e. g. V. inaequalis) and pears; and Verticillium spp. (wilt) on various plants, such as fruits and ornamentals, vines, soft fruits, vegetables and field crops, e. g. V. longisporum on oilseed rape, V. dahliae on strawberries, oilseed rape, potatoes and tomatoes, and V. fungicola on mushrooms; Zymoseptoria tritici on cereals; Phaeosphaeria maydis und Puccinia polysora.

Preferably, the inventive mixtures are suitable for controlling the following fungal diseases on soybeans: Alternaria spp. (Alternaria leaf spot); Cercospora spp. (Cercospora leaf spots), e. g. C. sojina or C. kikuchii); Colletotrichum (teleomorph: Glomerella) spp. (anthracnose), e. g. C. truncatum or C. gloeosporioides); Corynespora cassiicola (leaf spots); Dematophora (teleo morph: Rosellinia) necatrix (root and stem rot); Diaporthe spp., e. g. D. phaseolorum (damping off); Fusarium (teleomorph: Gibberella) spp. (wilt, root or stem rot), e.g. F. tucumaniae and F. brasiliense each causing sudden death syndrome on soybeans; Macrophomina phaseolina (syn. phaseoli) (root and stem rot); Microsphaera diffusa (powdery mildew); Peronospora spp. (downy mildew), e. g. P. manshurica; Phakopsora pachyrhizi and P. meibomiae (soybean rust); Phialophora spp., e. g. P. gregata: stem rot; Phomopsis spp., e. g. stem rot: P. phaseoli (teleo morph: Diaporthe phaseolorum); Pythium spp. (damping-off); Phytophthora spp. (wilt, root, leaf, fruit and stem root), e. g. P. megasperma, syn. P. sojae); Rhizoctonia spp., e. g. R. solani (root and stem rot); Sclerotinia spp. (stem rot or white mold); Septoria spp., e. g. S. glycines (brown spot); S. rolfsii (syn. Athelia rolfsii); Thielaviopsis spp. (black root rot).

More preferably, the inventive mixtures are suitable for controlling the following fungal diseases on soybeans: Alternaria spp. (Alternaria leaf spot); Cercospora spp. (Cercospora leaf spots), e. g. C. sojina or C. kikuchii); Colletotrichum (teleomorph: Glomerella) spp. (anthracnose), e. g.

C. truncatum or C. gloeosporioides); Corynespora cassiicola (leaf spots); Diaporthe spp., e. g.

D. phaseolorum (damping off); Fusarium (teleomorph: Gibberella) spp. (wilt, root or stem rot), e.g. F. tucumaniae and F. brasiliense each causing sudden death syndrome on soybeans; Mac rophomina phaseolina (syn. phaseoli) (root and stem rot); Peronospora spp. (downy mildew), e. g. P. manshurica; Phakopsora pachyrhizi and P. meibomiae (soybean rust); Phomopsis spp., e. g. stem rot: P. phaseoli (teleomorph: Diaporthe phaseolorum); Phytophthora spp. (wilt, root, leaf, fruit and stem root), e. g. P. megasperma, syn. P. sojae); Rhizoctonia spp., e. g. R. solani (root and stem rot); Septoria spp., e. g. S. glycines (brown spot).

Most preferably, the inventive mixtures are suitable for controlling Phakopsora pachyrhizi and P. meibomiae (soybean rust) on soybeans.

The mixtures according to the present invention, respectively, are also suitable for controlling harmful fungi in the protection of stored products or harvest and in the protection of materials. The term "protection of materials" is to be understood to denote the protection of technical and non-living materials, such as adhesives, glues, wood, paper and paperboard, textiles, leather, paint dispersions, plastics, cooling lubricants, fiber or fabrics, against the infestation and de struction by harmful microorganisms, such as fungi and bacteria. As to the protection of wood and other materials, the particular attention is paid to the following harmful fungi: Ascomycetes such as Ophiostoma spp., Ceratocystis spp., Aureobasidium pullulans, Sclerophoma spp., Chaetomium spp., Humicola spp., Petriella spp., Trichurus spp.; Basidiomycetes such as Coni- ophora spp., Coriolus spp., Gloeophyllum spp., Lentinus spp., Pleurotus spp., Poria spp., Ser- pula spp. and Tyromyces spp., Deuteromycetes such as Aspergillus spp., Cladosporium spp., Penicillium spp., Trichoderma spp., Alternaria spp., Paecilomyces spp. and Zygomycetes such as Mucor spp., and in addition in the protection of stored products and harvest the following yeast fungi are worthy of note: Candida spp. and Saccharomyces cerevisae.

They are particularly important for controlling a multitude of fungi on various cultivated plants, such as bananas, cotton, vegetable species (for example cucumbers, beans and cucurbits), cereals such as wheat, rye, barley, rice, oats; grass coffee, potatoes, corn, fruit species, soya, tomatoes, grapevines, ornamental plants, sugar cane and also on a large number of seeds. In a preferred embodiment, the inventive mix tures are used in soya (soybean), cereals and corn.

In general, "pesticidally effective amount" means the amount of the inventive mixtures or of compositions comprising the mixtures needed to achieve an observable effect on growth, in cluding the effects of necrosis, death, retardation, prevention, and removal, destruction, or oth erwise diminishing the occurrence and activity of the target organism. The pesticidally effective amount can vary for the various mixtures / compositions used in the invention. A pesticidally effective amount of the mixtures / compositions will also vary according to the prevailing condi tions such as desired pesticidal effect and duration, weather, target species, locus, mode of application, and the like.

As said above, the present invention comprises a method for improving the health of plants, wherein the plant, the locus where the plant is growing or is expected to grow or plant propaga tion material, from which the plant grows, is treated with a plant health effective amount of an inventive mixture.

The term "plant effective amount" denotes an amount of the inventive mixtures, which is suffi cient for achieving plant health effects as defined herein below. More exemplary information about amounts, ways of application and suitable ratios to be used is given below. Anyway, the skilled artisan is well aware of the fact that such an amount can vary in a broad range and is dependent on various factors, e.g. the treated cultivated plant or material and the climatic condi tions.

When preparing the mixtures, it is preferred to employ the pure active compounds, to which further active compounds against pests, such as insecticides, herbicides, fungicides or else herbicidal or growth-regulating active compounds or fertilizers can be added as further active components according to need.

The inventive mixtures are employed by treating the fungi or the plants, plant propagation materials (preferably seeds), materials or soil to be protected from fungal attack with a pesticidally effective amount of the active compounds. The application can be carried out both before and after the infection of the materials, plants or plant propagation materials (preferably seeds) by the pests.

In the context of the present invention, the term plant refers to an entire plant, a part of the plant or the propagation material of the plant.

The inventive mixtures and compositions thereof are particularly important in the control of a multitude of phytopathogenic fungi on various cultivated plants, such as cereals, e. g. wheat, rye, barley, triticale, oats or rice; beet, e. g. sugar beet or fodder beet; fruits, such as pomes, stone fruits or soft fruits, e. g. apples, pears, plums, peaches, almonds, cherries, strawberries, raspberries, blackberries or gooseberries; leguminous plants, such as lentils, peas, alfalfa or soybeans; oil plants, such as rape, mustard, olives, sunflowers, coconut, cocoa beans, castor oil plants, oil palms, ground nuts or soybeans; cucurbits, such as squashes, cucumber or mel ons; fiber plants, such as cotton, flax, hemp or jute; citrus fruit, such as oranges, lemons, grape fruits or mandarins; vegetables, such as spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes, cucurbits or paprika; lauraceous plants, such as avocados, cinnamon or camphor; energy and raw material plants, such as corn, soybean, rape, sugar cane or oil palm; corn; tobacco; nuts; coffee; tea; bananas; vines (table grapes and grape juice grape vines); hop; turf; sweet leaf (also called Stevia); natural rubber plants or ornamental and forestry plants, such as flowers, shrubs, broad-leaved trees or evergreens, e. g. conifers; and on the plant propagation material, such as seeds, and the crop material of these plants.

Preferably, the inventive mixtures and compositions thereof, respectively are used for control ling a multitude of fungi on field crops, such as potatoes, sugar beets, tobacco, wheat, rye, bar ley, oats, rice, corn, cotton, soybeans, rape, legumes, sunflowers, coffee or sugar cane; fruits; vines; ornamentals; or vegetables, such as cucumbers, tomatoes, beans or squashes.

Preferably, treatment of plant propagation materials with the inventive mixtures and compo sitions thereof, respectively, is used for controlling a multitude of fungi on cereals, such as wheat, rye, barley and oats; potatoes, tomatoes, vines, rice, corn, cotton and soybeans.

The term "cultivated plants" is to be understood as including plants which have been modified by breeding, mutagenesis or genetic engineering including but not limiting to agricultural biotech products on the market or in development (cf. http://cera-gmc.org/, see GM crop database therein). Genetically modified plants are plants, which genetic material has been so modified by the use of recombinant DNA techniques that under natural circumstances cannot readily be obtained by cross breeding, mutations or natural recombination. Typically, one or more genes have been integrated into the genetic material of a genetically modified plant in order to improve certain properties of the plant. Such genetic modifications also include but are not limited to tar geted post-translational modification of protein(s), oligo- or polypeptides e. g. by glycosylation or polymer additions such as prenylated, acetylated or farnesylated moieties or PEG moieties.

Plants that have been modified by breeding, mutagenesis or genetic engineering, e. g. have been rendered tolerant to applications of specific classes of herbicides, such as auxin herbi cides such as dicamba or 2,4-D; bleacher herbicides such as hydroxylphenylpyruvate dioxy genase (HPPD) inhibitors or phytoene desaturase (PDS) inhibitors; acetolactate synthase (ALS) inhibitors such as sulfonyl ureas or imidazolinones; enolpyruvylshikimate-3-phosphate synthase (EPSPS) inhibitors, such as glyphosate; glutamine synthetase (GS) inhibitors such as glufosinate; protoporphyrinogen-IX oxidase inhibitors; lipid biosynthesis inhibitors such as acetyl CoA carboxylase (ACCase) inhibitors; or oxynil (i. e. bromoxynil or ioxynil) herbicides as a result of conventional methods of breeding or genetic engineering. Furthermore, plants have been made resistant to multiple classes of herbicides through multiple genetic modifications, such as resistance to both glyphosate and glufosinate or to both glyphosate and a herbicide from anoth er class such as ALS inhibitors, HPPD inhibitors, auxin herbicides, or ACCase inhibitors. These herbicide resistance technologies are e. g. described in Pest Management Sci. 61 , 2005, 246; 61, 2005, 258; 61 , 2005, 277; 61 , 2005, 269; 61, 2005, 286; 64, 2008, 326; 64, 2008, 332;

Weed Sci. 57, 2009, 108; Austral. J. Agricult. Res. 58, 2007, 708; Science 316, 2007, 1185; and references quoted therein. Several cultivated plants have been rendered tolerant to herbicides by conventional methods of breeding (mutagenesis), e. g. Clearfield ® summer rape (Canola, BASF SE, Germany) being tolerant to imidazolinones, e. g. imazamox, or ExpressSun ® sun flowers (DuPont, USA) being tolerant to sulfonyl ureas, e. g. tribenuron. Genetic engineering methods have been used to render cultivated plants such as soybean, cotton, corn, beets and rape, tolerant to herbicides such as glyphosate and glufosinate, some of which are commercial ly available under the trade names RoundupReady ® (glyphosate-tolerant, Monsanto, U.S.A.), Cultivance ® (imidazolinone tolerant, BASF SE, Germany) and LibertyLink ® (glufosinate-tolerant, Bayer CropScience, Germany).

Furthermore, plants are also covered that are by the use of recombinant DNA techniques capa ble to synthesize one or more insecticidal proteins, especially those known from the bacterial genus Bacillus, particularly from Bacillus thuringiensis, such as d-endotoxins, e. g. CrylA(b), CrylA(c), CrylF, CrylF(a2), CryllA(b), CrylllA, CrylllB(bl) or Cry9c; vegetative insecticidal pro teins (VIP), e. g. VIP1, VIP2, VIP3 or VIP3A; insecticidal proteins of bacteria colonizing nema todes, e. g. Photorhabdus spp. or Xenorhabdus spp.; toxins produced by animals, such as scorpion toxins, arachnid toxins, wasp toxins, or other insect-specific neurotoxins; toxins pro duced by fungi, such Streptomycetes toxins, plant lectins, such as pea or barley lectins; aggluti nins; proteinase inhibitors, such as trypsin inhibitors, serine protease inhibitors, patatin, cystatin or papain inhibitors; ribosome-inactivating proteins (RIP), such as ricin, maize-RIP, abrin, luffin, saporin or bryodin; steroid metabolism enzymes, such as 3-hydroxysteroid oxidase, ecdyster- oid-IDP-glycosyl-transferase, cholesterol oxidases, ecdysone inhibitors or HMG-CoA-reductase; ion channel blockers, such as blockers of sodium or calcium channels; juvenile hormone ester ase; diuretic hormone receptors (helicokinin receptors); stilben synthase, bibenzyl synthase, chitinases or glucanases. In the context of the present invention these insecticidal proteins or toxins are to be understood expressly also as pre-toxins, hybrid proteins, truncated or otherwise modified proteins. Hybrid proteins are characterized by a new combination of protein domains, (see, e. g. WO 02/015701). Further examples of such toxins or genetically modified plants ca pable of synthesizing such toxins are disclosed, e. g., in EP-A 374 753, WO 93/007278,

WO 95/34656, EP-A 427 529, EP-A 451 878, WO 03/18810 und WO 03/52073. The methods for producing such genetically modified plants are generally known to the person skilled in the art and are described, e. g. in the publications mentioned above. These insecticidal proteins contained in the genetically modified plants impart to the plants producing these proteins toler ance to harmful pests from all taxonomic groups of athropods, especially to beetles (Coelop- tera), two-winged insects (Diptera), and moths (Lepidoptera) and to nematodes (Nematoda). Genetically modified plants capable to synthesize one or more insecticidal proteins are, e. g., described in the publications mentioned above, and some of which are commercially available such as YieldGard ® (corn cultivars producing the CrylAb toxin), YieldGard ® Plus (corn cultivars producing CrylAb and Cry3Bb1 toxins), Starlink ® (corn cultivars producing the Cry9c toxin), Herculex ® RW (corn cultivars producing Cry34Ab1 , Cry35Ab1 and the enzyme Phosphinothri- cin-N-Acetyltransferase [PAT]); NuCOTN ® 33B (cotton cultivars producing the CrylAc toxin), Bollgard ® I (cotton cultivars producing the CrylAc toxin), Bollgard ® II (cotton cultivars producing CrylAc and Cry2Ab2 toxins); VIPCOT ® (cotton cultivars producing a VIP-toxin); NewLeaf ® (po tato cultivars producing the Cry3A toxin); Bt-Xtra ® , NatureGard ® , KnockOut ® , BiteGard ® , Pro tecta ® , Bt11 (e. g. Agrisure ® CB) and Bt176 from Syngenta Seeds SAS, France, (corn cultivars producing the CrylAb toxin and PAT enzyme), MIR604 from Syngenta Seeds SAS, France (corn cultivars producing a modified version of the Cry3A toxin, c.f. WO 03/018810), MON 863 from Monsanto Europe S.A., Belgium (corn cultivars producing the Cry3Bb1 toxin), IPC 531 from Monsanto Europe S.A., Belgium (cotton cultivars producing a modified version of the CrylAc toxin) and 1507 from Pioneer Overseas Corporation, Belgium (corn cultivars producing the Cry1F toxin and PAT enzyme).

Furthermore, plants are also covered that are by the use of recombinant DNA techniques capa ble to synthesize one or more proteins to increase the resistance or tolerance of those plants to bacterial, viral or fungal pathogens. Examples of such proteins are the so-called “pathogenesis- related proteins” (PR proteins, see, e. g. EP-A 392225), plant disease resistance genes (e. g. potato cultivars, which express resistance genes acting against Phytophthora infestans derived from the mexican wild potato Solanum bulbocastanum) or T4-lysozym (e. g. potato cultivars capable of synthesizing these proteins with increased resistance against bacteria such as Er- winia amylvora). The methods for producing such genetically modified plants are generally known to the person skilled in the art and are described, e. g. in the publications mentioned above.

Furthermore, plants are also covered that are by the use of recombinant DNA techniques capa ble to synthesize one or more proteins to increase the productivity (e. g. bio mass production, grain yield, starch content, oil content or protein content), tolerance to drought, salinity or other growth-limiting environmental factors or tolerance to pests and fungal, bacterial or viral patho gens of those plants.

Furthermore, plants are also covered that contain by the use of recombinant DNA techniques a modified amount of substances of content or new substances of content, specifically to improve human or animal nutrition, e. g. oil crops that produce health-promoting long-chain omega-3 fatty acids or unsaturated omega-9 fatty acids (e. g. Nexera ® rape, DOWAgro Sciences, Cana da).

Furthermore, plants are also covered that contain by the use of recombinant DNA techniques a modified amount of substances of content or new substances of content, specifically to improve raw material production, e. g. potatoes that produce increased amounts of amylopectin (e. g. Amflora ® potato, BASF SE, Germany).

The separate or joint application of the compounds of the inventive mixtures is carried out by spraying or dusting the seeds, the seedlings, the plants or the soils before or after sowing of the plants or before or after emergence of the plants.

The inventive mixtures and the compositions comprising them can be used for protecting wood en materials such as trees, board fences, sleepers, etc. and buildings such as houses, out houses, factories, but also construction materials, furniture, leathers, fibers, vinyl articles, elec tric wires and cables etc. from ants and/or termites, and for controlling ants and termites from doing harm to crops or human being (e.g. when the pests invade into houses and public facili ties).

Customary application rates in the protection of materials are, for example, from 0.01 g to 1000 g of active compound per m 2 treated material, desirably from 0.1 g to 50 g per m 2 . For use in spray compositions, the content of the mixture of the active ingredients is from 0.001 to 80 weight %, preferably from 0.01 to 50 weight % and most preferably from 0.01 to 15 weight.

Microtest

The active compounds were formulated separately as a stock solution having a concentration of 10000 ppm in dimethyl sulfoxide.

The product copper oxychloride was used as commercial finished formulation and diluted with water to the stated concentration of the active compound.

Example 1 - Activity against the grey mold Botrytis cinerea in the microtiterplate test

The stock solutions were mixed according to the ratio, pipetted onto a micro titer plate (MTP) and diluted with water to the stated concentrations. A spore suspension of Botrci cinerea in an aqueous biomalt or yeast-bactopeptone-sodiumacetate solution was then added. The plates were placed in a water vapor-saturated chamber at a temperature of 18°C. Using an absorption photometer, the MTPs were measured at 405 nm 7 days after the inoculation.

Example 2 - Activity against rice blast Pyricularia oryzae in the microtiterplate test

The stock solutions were mixed according to the ratio, pipetted onto a micro titer plate (MTP) and diluted with water to the stated concentrations. A spore suspension of Pyricularia oryzae in an aqueous biomalt or yeast-bactopeptone-glycerine or DOB solution was then added. The plates were placed in a water vapor-saturated chamber at a temperature of 18°C. Using an ab sorption photometer, the MTPs were measured at 405 nm 7 days after the inoculation.

Example 3 - Activity against leaf blotch on wheat caused by Septoria tritici

The stock solutions were mixed according to the ratio, pipetted onto a micro titer plate (MTP) and diluted with water to the stated concentrations. A spore suspension of Septoria tritici in an aqueous biomalt or yeast-bactopeptone-glycerine or DOB solution was then added. The plates were placed in a water vapor-saturated chamber at a temperature of 18°C. Using an absorption photometer, the MTPs were measured at 405 nm 7 days after the inoculation. Example 4 - Activity against early blight caused by Alternaria solani

The stock solutions were mixed according to the ratio, pipetted onto a micro titer plate (MTP) and diluted with water to the stated concentrations. A spore suspension of Alternaria solani in an aqueous biomalt or yeast-bactopeptone-glycerine or DOB solution was then added. The plates were placed in a water vapor-saturated chamber at a temperature of 18°C. Using an ab sorption photometer, the MTPs were measured at 405 nm 7 days after the inoculation. Example 5 - Activity against Colletotrichum orbiculare

The stock solutions were mixed according to the ratio, pipetted onto a micro titer plate (MTP) and diluted with water to the stated concentrations. A spore suspension of Leptosphaeria no- dorum in an aqueous biomalt or yeast-bactopeptone-glycerine or DOB solution was then added. The plates were placed in a water vapor-saturated chamber at a temperature of 18°C. Using an absorption photometer, the MTPs were measured at 405 nm 7 days after the inoculation.

The measured parameters were compared to the growth of the active compound-free control variant (100%) and the fungus-free blank value to determine the relative growth in % of the pathogens in the respective active compounds.

These percentages were converted into efficacies.

An efficacy of 0 means that the growth level of the pathogens corresponds to that of the un treated control; an efficacy of 100 means that the pathogens were not growing.

The expected efficacies of active compound mixtures were determined using Colby's formula [R.S. Colby, “Calculating synergistic and antagonistic responses of herbicide combinations", Weeds 15, 20-22 (1967)] and compared with the observed efficacies.

Green House

The compound was dissolved in a mixture of acetone and/or dimethylsulfoxide and the wetting agent/emulsifier Wettol, which is based on ethoxylated alkylphenoles, in a ratio (volume) sol- vent-emulsifier of 99 to 1 to give a total volume of 5 ml. Subsequently, water was added to total volume of 100 ml.

This stock solution was then diluted with the described solvent-emulsifier-water mixture to the final concentration given in the table.

The product copper oxychloride was used as commercial finished formulation and diluted with water to the stated concentration of the active compound.

Example 1 - Protective control of soybean rust on soybeans caused by Phakopsora pachyrhizi

Leaves of potted soybean seedlings were sprayed to run-off with the previously described spray solution, containing the concentration of active ingredient or their mixture as described below. The plants were allowed to air-dry. The trial plants were cultivated for 2 days in a greenhouse chamber at 23-27°C and a relative humidity between 60 and 80 %. Then the plants were inoculated with spores of Phakopsora pachyrhizi. To ensure the success the artificial inoculation, the plants were transferred to a humid chamber with a relative humidity of about 95 % and 20 to 24 □ C for 24 h. The trial plants were cultivated for fourteen days in a greenhouse chamber at 23-27°C and a relative humidity between 60 and 80 %. The extent of fungal attack on the leaves was visually assessed as % diseased leaf area.

The disease ratings (or diseased leaf area) were converted into efficacies.

An efficacy of 0 means that the infection level of the treated plants corresponds to that of the untreated control plants; an efficacy of 100 means that the treated plants were not infected. The expected efficacies of active compound mixtures were determined using Colby's formula [R.S. Colby, “Calculating synergistic and antagonistic responses of herbicide combinations", Weeds 15, 20-22 (1967)] and compared with the observed efficacies.