Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
UNIVERSAL EYEWEAR
Document Type and Number:
WIPO Patent Application WO/2014/190166
Kind Code:
A1
Abstract:
An eyewear system including eyeglasses having first and second lenses; first and second nose pads; and a bridge operably connecting the first and second lenses, the bridge being bendable from a bridge rest position to permit relative movement between the first and second nose pads and providing a bridge pinch force of 50 g or less between the nose pads when the nose pads are moved 7 mm or less from the bridge rest position.

Inventors:
SHALON TADMOR (US)
Application Number:
PCT/US2014/039167
Publication Date:
November 27, 2014
Filing Date:
May 22, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
THINOPTICS INC (US)
International Classes:
G02C5/08
Domestic Patent References:
WO2012069980A22012-05-31
WO2010086650A12010-08-05
WO2012069980A22012-05-31
Foreign References:
EP2016457B12011-06-22
DE4407313A11995-09-07
US2234729A1941-03-11
US20120218506A12012-08-30
US1017579A1912-02-13
Other References:
See also references of EP 2999990A4
Attorney, Agent or Firm:
SHAY, James, R. et al. (2755 Campus DriveSuite 21, San Mateo CA, US)
Download PDF:
Claims:
CLAIMS

What is claimed is:

1. An eyewear system comprising eyeglasses comprising:

first and second lenses;

first and second nose pads; and

a bridge operably connecting the first and second lenses, the bridge being bendable to permit relative movement between the first and second lenses and providing a bridge force resisting relative movement between the first and second lenses from a rest position;

the first and second nose pads being operably connected to the first and second lenses, respectively, via connectors adapted to permit relative movement between the first and second nose pads and the first and second lenses, respectively, and providing first and second pad forces resisting relative movement between the first and second nose pads and the first and second lenses from rest positions, the first and second pad forces being less than the bridge force.

2. The eyewear system of claim 1 wherein the first and second nose pads each comprise a cantilever extending from its respective connector.

3. The eyewear system of clam 2 wherein the bridge force is a spring force having a spring constant greater than a spring constant of the cantilever of the first nose pad and the second nose pad.

4. The eyewear system of claim 1 wherein the nose pads are adapted to exert less than 150 g/cm2 of pressure on a nose of a user when the eyeglasses are mounted on the nose.

5. The eyewear system of claim 1 wherein the nose pads each comprise friction material.

6. The eyewear system of claim 5 wherein the friction material has a friction coefficient less than 3.5.

7. The eyewear system of claim 1 wherein the bridge force is 50 g or less when the first and second lenses are moved 7 mm or less relative to each other from the bridge rest position.

8. The eyewear system of claim 1 further comprising a case adapted to receive the eyeglasses, the case and eyeglasses being sized so that the bridge bends from its rest position when the eyeglasses are within the case.

9. The eyewear system of claim 8 wherein the bridge is adapted to provide a retention force between the eyeglasses and the case when the eyeglasses are disposed within the case.

10. The eyewear system of claim 8 wherein the case comprises offset frame guides sized and configured with respect to the eyeglasses to engage and fold the eyeglasses as the eyeglasses are inserted into the case.

11. The eyewear system of claim 8 wherein the case comprises a locking element adapted to hold the eyeglasses within the case.

12. The eyewear system of claim 11 wherein the further comprises an opening adapted to receive the eyeglasses, the locking element being disposed to block the opening in a first position and to permit access to the opening in a second position.

13. The eyewear system of claim 12 wherein the case further comprises a rotatable connection adapted to permit the locking element to rotate between the first position and the second position.

14. The eyewear system of claim 11 wherein the case further comprises a keychain connector.

15. The eyewear system of claim 14 wherein the keychain connector is disposed on the locking element.

16. The eyewear system of claim 1 wherein the bridge has an adjustable at-rest length.

17. The eyewear system of claim 1 wherein the bridge is connected to the first and second lenses.

18. The eyewear system of claim 17 wherein the bridge comprises first and second adjustable connectors adapted to move with respect to the first and second lenses, respectively, to change an effective length of the bridge. 19. The eyewear system of claim 1 wherein the first and second nose pad connectors are connected to the first and second optical lenses, respectively.

20. The eyewear system of claim 1 wherein the first and second nose pad connectors are adjustable to change a width between the first and second nose pads.

21. A method of using pince nez eyeglasses, the eyeglasses comprising first and second lenses, first and second nose pads and a bridge operably connecting the first and second lenses, respectively, the method comprising:

moving the first and second lenses of the eyeglasses away from each other against a bending force of the bridge;

permitting the bending force to move the first and second nose pads against first and second sides of a user's nose; and

moving the first and second nose pads with respect to the first and second lenses against first and second nose pad forces, respectively, as the nose pads engage the user's nose, the first and second pad forces being less than the bridge force.

22. The method of claim 21 further comprising exerting less than 30 g/cm2 of pressure on the nose with the nose pads. 23. The method of claim 21 wherein the bending force of the bridge is 50 g or less when the nose pads are moved 7 mm or less from a bridge rest position.

24. The method of claim 21 further comprising removing the eyeglasses from the nose and inserting them into a case, the inserting step comprising bending the bridge against the bending force as the eyeglasses are inserted into the case.

25. The method of claim 24 wherein the bending force applies a retention force between the eyeglasses and the case when the eyeglasses are in the case.

26. The method of claim 24 wherein the inserting step comprises engaging the eyeglasses with folding guides to fold the eyeglasses as the eyeglasses are inserted into the case.

27. The method of claim 26 further comprising folding the eyeglasses to place one lens over the other within the case.

28. The method of claim 24 further comprising locking the eyeglasses in the case.

29. The method of claim 28 wherein locking comprises moving a locking element over an opening in the case.

30. The method of claim 21 further comprising adjusting an at-rest length of the bridge.

31. The method of claim 21 further comprising adjusting a distance between a nose pad and a lens.

Description:
UNIVERSAL EYEWEAR

INCORPORATION BY REFERENCE

[0001] All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

BACKGROUND

[0002] The present invention relates to eyewear and in particular to Pince-Nez eyeglasses (i.e., two lens eyewear lacking temple pieces) that are comfortable, stable and have universal fit while still having full sized optics. The eyeglasses of this invention are also thin, light and easily stored.

[0003] There are over 40 million people in the US that use reading glasses known as readers. Current readers typically purchased in a drug store or other mass merchandisers are designed to fit most people by using the nose as a resting place. Since nose width, angle and shape vary considerably among users, standard readers achieve their stability via the temple pieces placed above and behind the user's ears.

[0004] Users wear readers at a different place down their nose in order to allow them to look over the lenses of the readers and to change the distance from the lens to the eye to adjust their effective power. The temple pieces of standard readers are usually long enough to accommodate these different positions without loss of stability of the eyeglasses on the user's face.

[0005] Most Pince-Nez eyeglasses apply a significant clamping force on the nose in order to stabilize the lenses on the wearer's face. To provide a universal fit, Pince-Nez eyeglasses should accommodate noses of varying sizes and shapes at varying wearing locations while maintaining stability without user discomfort. Many Pince-Nez eyeglass designs fail to meet this standard, however. For example, while attaching Pince-Nez eyeglasses on the pliable tissues over the nostrils might help attach the eyeglasses to any size nose, most users would find this attachment location to be uncomfortable because it restricts breathing, and the glasses would be too far away from the eyes.

[0006] Another common problem with readers is their availability when needed. While the temple pieces of standard readers can be folded toward the lenses to reduce the storage size of the eyeglasses, the temple pieces take up storage space, and the overall volume of the storage configuration of the readers may limit their accessibility. Because Pince-Nez eyeglasses do not have temple pieces, they present new opportunities for storage and accessibility. SUMMARY OF THE DISCLOSURE

[0007] The present invention relates to a universal Pince-Nez eyeglasses for use as readers and/or as sunglasses. The invention also relates to eyeglasses systems including eyeglasses and storage cases for the eyeglasses.

[0008] One aspect of the invention provides an eyewear system including eyeglasses having first and second lenses; first and second nose pads; and a bridge operably connecting the first and second lenses, the bridge being bendable from a bridge rest position to permit relative movement between the first and second nose pads and providing a bridge pinch force of 50 g or less between the nose pads when the nose pads are moved 7 mm or less from the bridge rest position. In some embodiments, the first and second nose pads are operably connected to the first and second lenses, respectively, via connectors adapted to permit relative movement between the first and second nose pads and the first and second lenses, respectively, and providing first and second pad forces resisting relative movement between the first and second nose pads and the first and second lenses from rest positions, the first and second pad forces being less than the bridge pinch force. The first and second nose pads may each have a cantilever extending from its respective connector. In some embodiments, the bridge force is a spring force having a spring constant greater than a spring constant of the cantilever of the first nose pad and the second nose pad.

[0009] In some embodiments, the nose pads are adapted to exert less than 150 g/cm 2 of pressure on a nose of a user when the eyeglasses are mounted on the nose. The nose pads may each include friction material, such as material having a friction coefficient less than 3.5.

[0010] Some embodiments of the eyewear system also include a case adapted to receive the eyeglasses, the case and eyeglasses being sized so that the bridge bends from its rest position when the eyeglasses are within the case. The bridge may be adapted to provide a retention force between the eyeglasses and the case when the eyeglasses are disposed within the case. In some embodiments, the case may also have offset frame guides sized and configured with respect to the eyeglasses to engage and fold the eyeglasses as the eyeglasses are inserted into the case.

[0011] In some embodiments, the case may also have a locking element adapted to hold the eyeglasses within the case. The case may also have an opening adapted to receive the eyeglasses, the locking element being disposed to block the opening in a first position and to permit access to the opening in a second position. The case may also have a rotatable connection adapted to permit the locking element to rotate between the first position and the second position.

[0012] In some embodiments, the case also has a keychain connector. The keychain connector may be disposed on the locking element. [0013] In some embodiments, the bridge of the eyeglasses has an adjustable at-rest length. In some embodiments the bridge may be connected to the first and second lenses. The bridge may also include first and second adjustable connectors adapted to move with respect to the first and second lenses, respectively, to change an effective length of the bridge.

[0014] In some embodiments, the first and second nose pad connectors are connected to the first and second optical lenses, respectively. In some embodiments, the first and second nose pad connectors are adjustable to change a width between the first and second nose pads.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative

embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:

[0016] Figure 1A is a perspective view of Pince-Nez eyeglasses according to one embodiment of the invention.

[0017] Figure IB is a cross-sectional view taken along the line B-B shown in Figure 1 A.

[0018] Figure 2 plots the distance between the tops of the nose pads versus the distance between the bottoms of the nose pads for a variety of users wearing the eyeglasses of Figures 1A and IB.

[0019] Figure 3 compares the nose pinch force provided by a variety of Pince-Nez eyeglasses.

[0020] Figure 4 is a perspective view of an embodiment of eyeglasses and case according to another embodiment of the invention in which the eyeglasses are stored flat.

[0021] Figure 5 is an elevational view of an embodiment of eyeglasses and case according to another embodiment of the invention in which the eyeglasses are stored in a folded

configuration.

[0022] Figure 6 is a perspective view of an embodiment of eyeglasses and case according to yet another embodiment of the invention in which the eyeglasses are stored in a folded

configuration.

[0023] Figure 7 is a perspective view of the embodiment of Figure 6 with the locking band in a locked position.

[0024] Figure 8 is sectional view of the case of Figure 4 without the eyeglasses.

[0025] Figure 9 is a partial perspective view of yet another embodiment of the eyeglasses of this invention.

[0026] Figure 10 is a perspective view of another embodiment of the eyeglasses of this invention. [0027] Figure 11 is a perspective view of yet another case for use with eyeglasses according to this invention.

DETAILED DESCRIPTION

[0028] Prior art Pince-Nez eyewear (see wwwdotendotwikipediadotorg/wiki/Pince-nez) typically utilize nose pads that are directly or indirectly attached to the lenses or lens frame. As a result, any changes to the distance between nose pads affect the distance between the lenses and their angular orientation and position with respect to the eyes, which can induce optical prism, introduce error in the optical cylinder axis or affect the lens aesthetics. The varying distance between the nose pads of prior art Pince-Nez eyewear further changes the nose clamp spring force, resulting in an inconsistent pinch force for different users, an unstable fit for some and discomfort for others. The large pinch force can also lead to tissue ischemia, adding to user discomfort.

[0029] The present invention provides eyeglasses that are comfortable and stable on noses of nearly all sizes and shapes. Typical reading glasses weigh over 20 g, even foldable compact versions (e.g. MicroVision) with smaller lenses weigh over 14 g. It will be appreciated that in a Pince-Nez design, the weight of the eyewear is important for both stability on the nose and comfort. Heavier eyewear without ear pieces requires more clamping force to maintain stability on the nose because of the increased weight and the increased mechanical moment which causes instability when the user moves their head up and down or from side to side. Since the clamping force translates to pressure exerted by the nose pads on the tissue, a larger clamping force can lead to user discomfort, pain and in extreme cases, tissue ischemia. Thus, in some embodiments, the eyeglasses reduce the pinching pressure required to maintain a stable position by reducing the mass of the full size optics and hence reducing inertia caused by head movement and gravitational pull and increase the area of the thin nose pads to distribute the force and hence reduce the pressure further.

[0030] In addition, some embodiments of the eyewear of this invention optionally increase the friction between the eyewear and the nose skin by utilizing novel nose pad materials. Such eyewear further reduces the clamping force required for stability while reducing the force causing slippage off the nose.

[0031] Some embodiments of the Pince-Nez eyewear of this invention provide the nose pinch force with a super elastic bridge spring whose force does not change significantly as a function of nose width. For example, the eyewear may employ thin super elastic alloy wire made from Nitinol to interconnect the lenses (referred to herein as a lens bridge). A superelastic bridge allows repeated transformation from a worn position to a folded position for storage while exerting repeatable, controlled and nearly constant low pinch force for varying bridge deformation cause by varying width noses during wear. This feature combined with use of thin molded polycarbonate lenses results in Pince-Nez reading eyewear a large viewing zone for reading comfortably without lens distortion and without the usability compromises often inflicted by compact reading glasses.

[0032] Some embodiments of the Pince-Nez eyewear of this invention provide elongated thin nose pads or folding nose pads whose specific separation distance allows the top of the pad to engage the nose via the force created by bridge spring while the bottom of the nose pad can flex or pivot to accommodate different nose angles and thus prevent the glasses from tipping forward.

[0033] One embodiment of the eyeglasses of this invention is shown in Figure 1. The eyeglasses 100 include full sized lenses 101 over molded on an nitinol wire bridge 102 (NDC, Fremont CA) with diameter of 0.010" to 0.030" (e.g., 0.020") covered with an elastomer 1 1 1. The lenses may be clear optical lenses for reading glasses or tinted sunglass lenses.

[0034] In the embodiment shown in Figures 1A and IB, the lenses 101 are molded

polycarbonate optical lenses less than 3 mm thick weighing less than 5 grams for 2.5 diopter full sized reading glasses with lens optical area of over 9 cm 2 . For lower optical powers or smaller optical area, the lens thickness and reader's weight can be reduced even further. For sunglasses or 3D glasses with no optical power the lenses can be less than 2 mm thick for any optical zone.

[0035] The lenses 101 are attached to the super elastic bridge 102, as shown. In alternative embodiments, the lenses can be attached to a frame, with the bridge forming part of the frame or extending between two frame sections.

[0036] In the illustrated embodiment, the eyeglasses have nose pads 103 that are no wider than the lens thickness. In this embodiment, the nose pads 103 are 13 mm long (+/- 4 mm). Nose pads 103 are attached to the lenses 101 (or, if there is an optional frame, to the frame) at their upper ends 104 and are free at their lower ends 105 to form cantilevers extending downward. In one embodiment, there is a 12 mm (+/- 3 mm) separation between the tops 104 of the nose pads 103, and the nose pads 103 extend downward at an angle 107 of 18° +/- 4° from the vertical in their rest positions.

[0037] In some embodiments, the nose pads are formed from a flexible material, such as 0.005- 0.020" (e.g., 0.010") inch thick polycarbonate. In such embodiments, the nose pad material, shape and cantilever connection permit the nose pads 103 to bend with a spring constant that is less than the spring constant of the bridge 102. The nose pads 103 can therefore flex to accommodate the nose geometry while permitting the entire nose pad to maintain contact with the nose. [0038] In some embodiments, a 10 mm long super elastic bridge 102 exerts a pinch force measured at the tops 104 of the nose pads 103 of less than 10 g on a narrow nose width of 12 mm, and less than 50 g (0.05 N) on a large nose width of 19 mm (all measurements +/- 20%), as it flexes through angle 108 to accommodate various width noses. The 13.5 mm long nose pads 103 are 2 mm wide providing a total area of 0.24 cm 2 and thus average pressure well less than

150 g/cm 2 .

[0039] The nose pads 103 may have an optional friction material (e.g., laminated onto an elastic member, such as the polycarbonate described above) to further increase the stability of the eyeglasses on the nose by minimizing slippage force due to the component of the pinch force along the surface of the skin and rotation moment due to the eyeglasses' center of mass. The friction can be created by low durometer elastomers such as 3M grip tape (GM613, 3M MN, ASTM 1894 coefficient of friction measured against the same material of less than 3.5), silicone, open cell polyurethane, or micro texture sufficient to grip the skin but not to cause discomfort such as textured polymer (polycarbonate embossed with micro machined or micro molded texture) or micro grit impregnated surface (60-400 grit).

[0040] Test data comparing various Pince-Nez eyeglass designs are shown in Figures 2 and 3. Figure 2 plots the distance (as determined by optical measurements) between the tops 104 of the nose pad 103 versus the distance between the bottoms 105 of the nose pads 103 for a variety of users (having a variety of nose sizes and shapes) each wearing the eyeglasses embodiment shown in Figures 1A and IB. The average top distance was 16.1mm (STD 2.4 mm) with a range of 10.6-19.8 mm and a bottom distance of 23.9 mm (STD 3.1) with a range of 15.4-27.9 mm. As can be appreciated from the linear regression line 401, no one line can be drawn so that all the users would experience proper fit. These measurements were made with the test frame positioned on the appropriate location on the nose bridge; in practice, users vary the location of the eyeglasses on their nose based on the task which adds further variability to the data. As observed in many fit studies, if the bottoms of the nose pads contact the nose while the top pads do not due to the angle and separation, the bottom contact point becomes a pivot point and the glasses easily tip over and fall off the face when the user tilts their head downward to read a tablet or menu. If the top of the nose pads contacts the nose, it becomes the pivot point and the glasses tip over making them no longer perpendicular to the visual axis compromising their usefulness.

[0041] Figure 3 compares the nose pinch force (measured at the top of the nosepads) provided by a variety of Pince-Nez eyeglasses. The embodiment shown by Figures 1A and IB is represented by line 402. As can be seen, the eyeglasses of this invention provide lower pinch forces than the other eyeglasses tested across a range of nose sizes. [0042] In some embodiments, the eyeglasses are designed to fit in compact storage cases, as discussed in more detail below. For example, the embodiment shown in Figures 1A and IB may be stored flat in a case 202 extending from a housing 206 designed to be attached to the back of a cell phone 201 , as shown in Figure 4. Case 202 has an opening 204 at its top into which the eyeglasses 100 may be inserted. In some embodiments, the eyeglasses 100 are slightly longer than the case 202, and the eyeglasses are therefore bent at the bridge 102 during insertion. In such embodiments, the spring action of the bridge 102 may help retain the eyeglasses in the case.

Optional retention features, such as surfaces 501 and 502, may be provided inside the case to hold the eyeglasses within the case, as shown in the cut-away view of Figure 8. In this optional embodiment, the eyeglasses bend at bridge 102 as they are inserted through opening 204 into case 202, then unbend slightly as the lenses pass surfaces 501 and 502. Likewise, to remove the eyeglasses from case 202, the eyeglasses bend at bridge 102 when the lenses move toward each other as the eyeglasses are pulled through opening 204.

[0043] An optional cut-away portion 203 may leave the bridge 102 exposed after insertion so that the eyeglasses may be easily extracted from the case. In some embodiments, protruding portions of the eyeglasses (such as, e.g., features 109 and 1 10 shown in Figures 1A and IB) may provide a friction fit between the eyeglasses 100 and the inside of case 202. In some

embodiments an internal storage volume of the case 202 is less than 14 cm 3 for a full 40 mm wide optical zone 2.5 diopter readers stored flat as shown in Figure 4, and the case 202 is less than 4 mm thick.

[0044] Figures 5-7 show embodiments of Pince-Nez eyeglass cases in which the eyeglasses are folded for storage. In Figure 5, the eyeglasses 100 are bent at the bridge 102 to place one lens 101 over the other lens 101. Eyeglasses 100 may be inserted through an opening 302 on one end of the case 301. The spring force of the superelastic bridge 102 and the friction fit between the eyeglasses and the interior of the case 301 maintain the position of eyeglasses 100 within case 301. Bridge 102 extends through opening 302 as shown to provide structure to grab for removal of eyeglasses 100 from case 301. In this embodiment, the case 301 may be only 9 mm thick or less.

[0045] In the embodiments of Figures 6 and 7, eyeglasses 100 may be inserted through an opening 804 for storage within an eyeglass case 801. A locking band 802 rotates around pivot 803 to open the case 801 (as shown in Figure 6) or close it (as shown in Figure 7). Bridge 102 may be inserted first, as shown, and a pair of optional offset guides 803 and 804 help move the one lens 101 over the other lens 101 as the eyeglasses are advanced into case 801. An optional keychain hook 806 may be provided for attachment of the case to a keychain or other holder. The expanding force of superelastic bridge 102 causes the eyeglasses to move against the internal surfaces of the case and helps retain the eyeglasses in the case.

[0046] An alternative embodiment of the eyeglasses is shown in Figure 9. In this embodiment, the nose pads 600 are wider than the thickness of the lens 101. The nose pads therefore are designed to fold for storage. For eyeglasses intended to be stored flat, the nose pads must fold to a thickness equal to or less than the thickness of the lenses. For eyeglasses intended to be stored in a folded configuration, the nose pads must fold to a thickness equal to or less than the combined thicknesses of the two lenses.

[0047] For example, as shown in Figure 9, the nose pad 600 is formed from a laminate 602 made from friction enhancing material and polycarbonate (0.01" thick) and is attached to the bridge 601 at the top point. Nose pad 600 offers the same spring action described above (i.e., it has a spring constant less than the spring constant of bridge 102) but distributes the pinch force over a larger area. When stored, the nose pad folds along line 603 to become flat.

[0048] Yet another configuration is shown in Figure 10. Eyeglasses 1000 have lenses 1001 connected by a superelastic bridge 1002. Nose pads 1009 with friction material facing the nose are connected to the lenses 1001 by nose pad carriers 1008 and super elastic torsion members such as nitinol wires 101 1 (0.02" diameter or less) and fold into the plane of the lenses when the lenses are inserted into a case or are folded flat against each other. The torsion element provides the spring force to engage the nose with the pad as well as torsion force to restore this orientation when withdrawn from a case thus making the glasses ultra compact and easy to store and carry.

[0049] The embodiment shown in Figure 10 may be full size sunglasses having a 62 mm wide optical zone and weighing less than 7 g. The sunglasses may be stored in a flat configuration or in a folded configuration, as described above, in a case with an internal volume less than 10 cm 3 .

[0050] The embodiment of Figure 10 also provides adjustable positions for the bridge 1002 and nose pads 1009 to accommodate a range of nose sizes for a comfortable and secure fit.

Superelastic nitinol bridge 1002 is attached to two thin bridge carriers 1003 that can slide on the back surface of the lenses. Plastic or metal rivets 1006 whose heads are trapped by holes on the front of each lens penetrate serrated channels 1005 in the carriers 1003. The rivets are attached to the nose pad carriers 1008 so that as the lenses are pushed toward each other the nose bridge narrows to accommodate narrower noses.

[0051] Figure 1 1 shows yet another embodiment of a flat glasses case 1 101 attached to a housing 1 103 via elastic connections 1105, 1 106, 1107, and 1 108. Housing 103 may be designed to attach to a cell phone. Elastic connections 1 105-1 108 permit the distance between case 1 101 and housing 1 103 to be increased to allow the user to use the space between the glasses case 1101 and the housing 1 103 as a compact wallet carrying money, ID or credit cards 1 104.