Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PROCESS FOR PRODUCING A SOL-GEL-BASED ABSORBER COATING FOR SOLAR HEATING
Document Type and Number:
WIPO Patent Application WO/2007/147399
Kind Code:
A2
Abstract:
Process for producing a solar absorber coating, which comprises the steps: coating of a substrate with a titanium precursor solution to produce a titanium dioxide layer by the sol-gel technique and heat treatment of the coated substrate to pyrolyse and crystallize the layer, characterized in that silver ions are added to the titanium precursor solution prior to coating in such an amount that the heat-treated layer has a proportion by mass of silver in the range from 10% to 80% and pyrolysis and crystallization of the layer are carried out with illumination of the layer with visible light.

Inventors:
ES-SOUNI MOHAMMED (DE)
Application Number:
PCT/DE2007/001090
Publication Date:
December 27, 2007
Filing Date:
June 19, 2007
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
FACHHOCHSCHULE KIEL (DE)
ES-SOUNI MOHAMMED (DE)
International Classes:
C07C253/30; C07C255/29; C07C255/44
Domestic Patent References:
WO1997038145A11997-10-16
WO1996037739A11996-11-28
Foreign References:
US5912045A1999-06-15
Other References:
CHAO HE ET AL: "Influence of silver doping on the photocatalytic activity of titania films" APPLIED SURFACE SCIENCE, ELSEVIER, AMSTERDAM, NL, Bd. 200, Nr. 1, 15. November 2002 (2002-11-15), Seiten 239-247, XP002376567 ISSN: 0169-4332
LIZHI ZHANG ET AL: "Ambient light reduction strategy to synthesize silver nanoparticles and silver-coated TiO2 with enhanced photocatalytic and bactericidal activities" LANGMUIR, ACS, WASHINGTON, DC, US, Bd. 19, 21. Oktober 2003 (2003-10-21), Seiten 10372-10380, XP002437601 ISSN: 0743-7463
TRAVERSA E ET AL: "SOL-GEL PREPARATION AND CHARACTERIZATION OF AG-TIO2 NANOCOMPOSITE THIN FILMS" JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, SPRINGER, NEW YORK, NY, US, Bd. 19, Nr. 1-3, 1. Dezember 2000 (2000-12-01), Seiten 733-736, XP001001869 ISSN: 0928-0707
Attorney, Agent or Firm:
BIEHL, Christian (Niemannsweg 133, Kiel, DE)
Download PDF:
Claims:

PATENTANSPRüCHE

1. Verfahren zur Herstellung einer Solarabsorberbeschichtung mit den Schritten: Beschichten eines Substrat mit einer Titan-Precursor-Lösung zur Erzeugung einer Titandioxid-Schicht nach der Sol-Gel-Technik und Wärmebehandlung des beschichteten Substrats zur Pyrolyse und Kristallisation der Schicht,

dadurch gekennzeichnet, dass

der Titan-Precursor-Lösung vor dem Beschichten Silber-Ionen in solcher Menge beigemischt werden, dass die wärmebehandelte Schicht einen Silber-Massenanteil zwischen 10 % und 80 % aufweist und

Pyrolyse und Kristallisation der Schicht unter Beleuchten der Schicht mit sichtbarem Licht erfolgen.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass einzelne Schichten von etwa 100 Nanometer Dicke erzeugt werden.

3. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Silber-Massenanteil der wärmebehandelten Schicht zwischen 50 % und 70 % beträgt.

4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Wärmebehandlung bei Temperaturen bis 500 °C erfolgt.

5. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass eine Mehrzahl von Schichten übereinander angeordnet wird, wobei sich die einzelnen Schichten im Silbergehalt unterscheiden.

6. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Beleuchtung der Schicht mit Glühlampen erfolgt.

7. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Beleuchtung der Schicht mit einer Lichtleistungsdichte zwischen 25 und 70 mW/cm 2 erfolgt.

8. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Schicht auf metallische Substrate aufgebracht und unter Stickstoff- oder Formiergasatmosphäre wärmebehandelt wird.

9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das metallische Substrat wenigstens eines der Metalle Kupfer, Aluminium oder Edelstahl enthält.

Description:

Verfahren zur Herstellung einer Absorberbeschichtung auf Sol-Gel-Basis für die Solarthermie

Die Erfindung betrifft ein Verfahren zur Herstellung einer Absorberbeschichtung für die - Solarthermie, das auf einem Sol-Gel-Verfahren beruht und mit dem Schichten aufweitgehend beliebige Substrate aufgebracht werden können.

Solarkollektoren nutzen die einfallende Sonnenstrahlung durch Absorption sichtbaren Lichts und Umwandlung dieser elektromagnetischen Energie in Wärme. Diese wird generell an ein wärmespeicherndes, fließfähiges Medium abgegeben und durch den Fluss einem Speicherreservoir zugeführt. Solarkollektorflächen bestehen typisch aus beschichteten Kupfer- oder Aluminiumblechen, die mit Rohrleitungen verschweißt sind, um einen guten Wärmetransport in das in den Rohren geführte Speichermedium zu sichern.

Die letzten Endes erzielbare Nutzwärme hängt wesentlich vom Absorptionsvermögen der Kollektorbeschichtung ab, welches idealerweise für Licht im gesamten solaren Spektrum hoch sein muss. Die so gewonnene Wärme darf jedoch zugleich nicht übermäßig im Infrarotspektrum wieder emittiert werden. Man fordert von der Beschichtung deshalb zusätzlich ein geringes Emissionsvermögen im Wellenlängenbereich oberhalb von etwa 2000 Nanometer, welches mit einer hohen Reflektivität in diesem Spektralbereich einhergeht.

Absorberbeschichtungen, die den genannten Anforderungen entsprechen, sind bereits kommerziell erhältlich und werden als selektiv bezeichnet. Die großflächige Herstellung ist in hoch optimierten Beschichtungsanlagen etwa mittels Physical Vapour Deposition (PVD) z.B. auf durchlaufenden Kupfer-Bändern möglich, wobei sich beschichtete Flächen von etlichen Quadratmeter pro Stunde erzielen lassen. Weiterhin sind Sputter- Verfahren und auch ein kombiniertes CVD/Sputter- Verfahren bekannt. Allerdings handelt es sich hierbei um Hochvakuum-Prozesse mit erheblichem apparativen Aufwand. Für weitere Informationen sei an dieser Stelle auf die Publikation BINE projektinfo 5/99 des BINE Informationsdienstes herausgegeben vom Fachinformationszentrum Karlsruhe verwiesen.

Robuste, fest haftende, thermisch und chemisch langzeitstabile Beschichtungen lassen sich bekanntlich auch durch Sol-Gel-Beschichtungsverfahren erzeugen. Die Vorteile solcher Verfahren liegen neben den geringen Anforderungen an Equipment und Prozesskontrolle in der hohen Variabilität der verwendbaren Materialien hinsichtlich Zusammensetzung und Schicht- struktur, in der Möglichkeit zur Beschichtung nahezu beliebiger nicht-planarer Flächen, im relativ geringen Energiebedarf und nicht zuletzt in der Kombinierbarkeit verschiedener Be- schichtungsschritte zur Erzeugung von multifunktionellen Schichten, wie sie sich mit anderen bekannten Verfahren nicht oder mit kaum vertretbarem Aufwand realisieren lassen. Von daher erscheint es erstaunlich, dass der Herstellung von Solarabsorberschichten mittels Sol-Gel- Verfahren bis heute nur sehr wenig Aufmerksamkeit geschenkt worden ist.

Einzige derzeit bekannte Ausnahme und damit zugleich nächstkommender Stand der Technik ist die Patentschrift DE-C2 101 21 812, die ein Verfahren zur Herstellung einer selektiven Absorberschicht durch Tauchbeschichtung schützt. Hierzu wird auf einem magnesiumhalti- gen Aluminiumblech eine Titan enthaltende Oxidschicht gebildet, die so genannte selektiv absorbierende Strukturelemente enthalten soll. Leider ist aber aus der Druckschrift nicht klar ersichtlich, welcher Natur oder welchen Ursprungs diese „Strukturelemente" sein sollen. Dies führt zunächst zu dem Verdacht, dass konkret eine Titandioxid-Beschichtung des Substrats als Absorber gemeint sein könnte. Dem stünden allerdings experimentelle Befunde (vgl. auch Fig. 1) eindeutig entgegen. Somit bleibt anzunehmen, dass der konkrete Bezug auf das Mg- Al-Substrat hier erfindungswesentlich ist und eine Oxidation der Substratoberfläche selbst - vielleicht durch die Beimengungen von Salpetersäure? - herbeigeführt wird, um den beschriebenen Absorbereffekt zu erzielen. Wenn dies zutreffen sollte, hätte man es hier nicht mit einer klassischen Sol-Gel-Beschichtung, sondern mit einer chemischen Oberflächenbehandlung zu tun. Wie dem auch sei, die Lehre der DE-C2 101 21 812 gibt keinen Anlass zu glauben, dass es sich bei der dort beschriebenen Beschichtung um eine Solarabsorber- Beschichtung für mehrere - oder gar weitgehend beliebige - Substrate handeln könnte.

Es ist somit die Aufgabe der Erfindung, ein Verfahren zur Herstellung einer für die - Solarthermie günstigen Absorberbeschichtung anzugeben, durch das sich die Schichten mit bekannten Sol-Gel-Beschichtungsverfahren (Sprühen, Tauchen, Schleudern) auf verschiedenen Substraten, insbesondere auf Kupfer, Aluminium, Edelstahl oder Glas, bilden lassen.

Die Aufgabe wird gelöst durch ein Verfahren zur Herstellung einer Solarabsorberbeschich- tung mit den Merkmalen des Anspruches 1. Die Unteransprüche geben vorteilhafte Ausgestaltungen an.

Das erfindungsgemäße Verfahren besteht in der an sich bekannten, konventionellen Beschich- tung eines Substrats mit einer Titandioxid-Schicht unter Verwendung einer Precursor-Lösung, die mit einem Sol-Gel-Prozess auf das Substrat gebracht und anschließend wärmebehandelt wird, nunmehr erweitert um zwei erfindungsgemäße Schritte:

der Precursor-Lösung werden vor der Beschichtung Silber-Ionen (z.B. in Form von Silbernitrat-Lösung) beigemengt, derart dass der Massenanteil des Silbers in der später getrockneten TiO 2 / Ag-S chicht zwischen 10 % und 80 %, besonders bevorzugt zwischen 50 % und 70 %, beträgt;

das beschichtete Substrat wird während der gesamten Wärmebehandlung (Trocknung und Kristallisation) mit sichtbarem Licht beleuchtet (vorzugsweise mit einer Leistungsdichte im Bereich von 25 mW/cm 2 bis 70 mW/cm 2 ).

Der Effekt dieser erfindungsgemäßen Maßnahmen besteht in einer erheblichen Steigerung des Absorptionsvermögens der Beschichtung für sichtbares Licht (ca. 400-700 nm) sowie für das sich anschließende Nahinfrarot-Spektrum mit dann abfallender Tendenz, d.h. in einem sehr breiten Spektralbereich, wobei der Effekt wesentlich von der verwendeten Silberkonzentration abhängt. Es wurden Experimente zu Schichten mit 10% bis 80 % Silbermassenanteil durchgeführt, wobei sich zeigte, dass der Bereich zwischen 50 % und 70 % besonders gute Ergebnisse liefert.

Die beschriebene Wirkung wird verdeutlicht durch die folgenden Figuren:

Fig. 1 zeigt das Ergebnis einer photometrischen Messung für eine reine TiO 2 -Schicht (Anatas-Phase, 100 nm dick) auf einem Glassubstrat mit Messwerten der Re- flektivität R, der Transmissivität T und des Absorptionsvermögens A;

Fig. 2 zeigt zum Vergleich dieselbe Messung wie in Fig. 1 an einer TiO 2 /Ag-Schicht (100 nm) mit 70 % Massenanteil Silber und pyrolysiert und kristallisiert unter Licht;

Fig. 3 zeigt die Reflektionsmessung einer TiO 2 /Ag-Schicht (100 nm) mit 70 % Massenanteil Silber auf einem Kupfersubstrat.

Eine reine Titandioxid-Schicht ist als Solarabsorber ungeeignet, wie aus Fig. 1 klar ersichtlich ist. Dargestellt sind Transmission-, Reflexions- und Absorptionsvermögen (T, R, A) einer mit 100 nm TiO 2 beschichteten Glasplatte. Die Glasplatte selbst wurde auch unbeschichtet vermessen, so dass die gezeigten Messwerte hiervon bereinigt und als Schichteigenschaften zu verstehen sind. Reines TiO 2 lässt bis etwa 2700 nm rund 80 % der eingestrahlten Lichtleistung durch und reflektiert den Rest. Die Absorption nimmt erst im Infraroten jenseits von 2700 nm Werte oberhalb von 10 % an.

Eine gleiche Glasplatte wurde nach der erfindungsgemäßen Lehre mit einer 100 nm dicken Schicht TiO 2 / Ag (70 % Silbermassenanteil) beschichtet und wie oben vermessen. Fig. 2 ist zu entnehmen, dass diese Schicht im sichtbaren Wellenlängenbereich (ca. 400-700 nm) gut 70- 80 % des Lichts absorbiert, den Rest überwiegend reflektiert und nur wenig Licht durchlässt. Diese fundamental andersartige Verhalten im Vergleich zum reinen TiO 2 „normalisiert" sich dann ein wenig zu größeren Wellenlängen hin; bei 2000 nm findet man ein Verhältnis T:R:A von etwa 55:35:10 für die erfindungsgemäße Schicht gegenüber ungefähr 80:15:5 für TiO 2 (vgl. Fig. 1).

Bei der Anwendung der erfindungsgemäßen Beschichtungen in der Solarthermie sind diese üblich auf Metallbleche, insbesondere auf Kupfer, Aluminium und Edelstahl, aufzubringen. Dabei sollte für eine Stickstoffatmosphäre oder Formiergasatmosphäre gesorgt werden, da sonst die Werkstoffe oxidieren und eine gute Haftung beeinträchtigt sein könnte. Fig. 3 zeigt das Ergebnis einer Reflektivitätsmessung für eine 100 nm dicke TiO 2 /Ag-Schicht (70% Silbermassenanteil) auf einem Kupferblech. Die Reflektivität liegt im sichtbaren Spektrum um oder sogar unter 10 % und steigt bis etwa 2300 nm nur langsam auf ca. 20 % an. Jenseits von 2300 nm zeigt die Reflektivität einen starken Anstieg auf etwa 60 % bei 3000 nm. Aus technischen Gründen (Limitierung des Messbereichs) konnte die Reflektivität noch nicht oberhalb von 3000 nm weiterverfolgt werden. Es deutet sich aber bereits klar an, dass z.B. erfindungs- gemäß beschichtete Kupferbleche genau die geforderten Eigenschaften eines selektiven Solarabsorbers zeigen.

Bei Solarthermiebeschichtungen sind neben den optischen Eigenschaften auch noch die Haftung am Substrat sowie chemische und thermische Beständigkeit unter klimatischen Extremen (Bsp. Stillstand des Speichermediums bei intensiver Sonneneinstrahlung) von Bedeutung. Reines Titandioxid erfüllt diese Bedingungen hervorragend. Daran ändert sich wenig durch die Anreicherung mit Silber, allerdings ist die TiO 2 -Ag-Kompositschicht antibakteriell und besitzt Antifouling-Eigenschaften. Dies kann als vorteilhafte Abwehr gegen den unerwünsch-

ten Bewuchs - z.B. mit Pilzkulturen - aufgefasst werden. Natürlich erlaubt das Sol-Gel- Verfahren wie die anderen bekannten Verfahren auch das Erzeugen einer tiefenabhängigen Materialverteilung, also etwa eines Silbergradienten bezüglich der Schichtdicke. Vorstellbar sind somit Absorberschichten, die unmittelbar über dem Metallsubstrat Licht absorbieren, wohingegen sie zur Schichtoberfläche hin immer weniger Silber aufweisen, so dass die Oberfläche selbst aus reinem TiO 2 besteht.

Ausführungsbeispiel

Herstellung der Sole

Zur Herstellung von 200 ml einer 0,6 molaren Lösung werden 20 ml 2-Methoxyethanol und Acetylaceton (Hacac) in einem Becherglas vorgelegt. Danach wird Titan-isopropoxid zugegeben. Das Gemisch lässt man 30 min rühren.

Als zweite Lösung werden 20 ml 2-Methoxyethanol mit Wasser gemischt. Nach 30 min Rühren wird die wasserhaltige Lösung zu dem Titan-Acetylaceton-Komplex gegeben, weitere 30 min rühren lassen.

Für die Silberlösung werden 20 ml 2-Methoxyethanol in einem Becherglas vorgelegt. Danach werden AgNO 3 und Pyridin dazugegeben, wonach man diesen Komplex ebenfalls 30 min rühren lässt. Danach kann die Silberlösung zu der stabilisierten und hydrolysierten Titanlösung zugegeben werden. Vorzugsweise werden dem SoI noch vier Gramm Polyethylenglycol 400 zur Verbesserung der Filmbildungseigenschaften zugegeben.

Nach 30-minütigem Rühren wird die Lösung mit 2-Methoxyethanol auf 200 ml aufgefüllt und anschließend gefiltert.

Verwendete Stöchiometrien:

- Ti-isoprop. : Hacac : H 2 O = 1 : 0,5 : 4 (mol)

- AgNO 3 : Pyridin = 1 : 15 (mol)

Einwaagen für 200 ml Ansätze

Herstellung der Beschichtungen

Die Herstellung der Proben erfolgt mittels Spincoating, Tauchbeschichten oder Sprühen. Generell sind die erzeugten Schichten 100 ntn dick. Die Pyrolyse erfolgt bei 350 0 C. Während der Pyrolyse müssen die Schichten ständig beleuchtet werden. Nach der Pyrolyse erscheinen die Proben deutlich dunkler im Vergleich zu unbelichteten Proben. Danach wird die Temperatur auf 500 °C erhöht und unter Licht wie oben für 30 Minuten kristallisiert. Durch die Beschränkung der Wärmebehandlung auf Temperaturen bis höchstens 500 °C wird sichergestellt, dass sich im Wesentlichen polykristallines TiO 2 in der Anatas-Phase bildet. Dies scheint für das hier beschriebene Verfahren besonders günstig zu sein.

Die Beleuchtung der Proben erfolgte in den Laborversuchen mittels konventioneller Glühbirnen (60 W, 100 W), wobei die Lampen auf die Proben gerichtet und in einem Abstand von ungefähr 10-20 cm angeordnet wurden. Die Lampen emittierten Licht im gesamten sichtbaren Spektrum und Wärmestrahlung. Es ist ebenfalls möglich, die Proben mit einem Laserstrahl zu beleuchten, vorzugsweise mit einem grünen Laser um 550 nm Wellenlänge. Durch Messung der eingestrahlten Lichtleistungsdichte am Ort der Probe wurde ermittelt, dass diese bevorzugt zwischen 25 und 70 mW/cm 2 eingerichtet werden sollte.